

MODUL PRAKTIKUM STATISTIKA INDUSTRI 2

Oleh : Widya Setiafindari, S.T., M.Sc.

UTY

UNIVERSITAS TEKNOLOGI YOGYAKARTA 2019

@ 2019

Diterbitkan oleh: Universitas Teknologi Yogyakarta Jl. Siliwangi, Jombor, Sleman, Yogyakarta Email: <u>publikasi@uty.ac.id</u>

Website: uty.ac.id

Statistika Industri 2

ISBN

978-623-92621-9-8

Oleh: Widya Setiafindari, S.T., M.Sc.

Edisi ke-1

Cetakan Pertama, 2019

Hak Cipta @2019 pada penulis,

Dilarang memperbanyak atau memindahkan sebagian atau seluruh isi buku ini dalam bentuk apapun tanpa izin dari penulis.

KATA PENGANTAR

Alhamdulillaahirobbil'alamin. Sesungguhnya pujian hanyalah untuk Allah, Sujud dan syukur kepada Allah SWT atas segala rahmat dan karunia-Nya sehingga diberikan kemudahan serta kelancaran dalam menyelesaikan penyusunan Modul Praktikum Statistika Industri untuk Mahasiswa/i pada Program Studi Teknik Industri ini. Dengan Modul Praktikum ini, diharapkan dapat memberikan masukan dan bermanfaat dalam memperdalam aplikasi dari penguasaan teori Statistika Industri. Dalam praktikum ini software yang digunakan adalah software SPSS. Praktikum Statistika ini mempelajari tentang teknik pengolahan data menggunakan metode-metode statistika. Akhirnya, Penulis menyadari bahwa dalam penyusunan modul ini masih jauh dari kesempurnaan. Oleh karena itu segala kritik, masukan dan saran demi kesempurnaan modul praktikum ini sangat diharapkan. Semoga modul praktikum Statistika Industri ini akan memberikan manfaat yang berguna, khususnya bagi para peserta praktikum.

Yogyakarta, November 2019

Penyusun

DAFTAR ISI

BAB I PENGENALAN PRAKTIKUM STATISTIK	1
BAB II PENGENALAN SOFTWARE SPSS	3
BAB III INPUT DATA	8
BAB IV STATISTIK DESKRIPTIF	10
BAB V UJI NORMALITAS DAN KESERAGAMAN DATA	31
BAB VI UJI RELIABILITAS DAN VALIDITAS	
BAB VII STATISTIK PARAMETRIK	50
BAB VIII STATISTIK NON PARAMETRIK	70
BAB IX MULTIVARIATE ANALYSIS OF VARIANCE	113
BAB X REGRESI LINIER DAN REGRESI LINIER BERGANDA	125
BAB XI ANALISIS FAKTOR	138

BAB I PENGENALAN PRAKTIKUM STATISTIK

1.1 Deskripsi Materi

Materi praktikum statistik industri terdiri dari analisis statistik deskriptif, statistikparametrik dan statistik non parametrik. Praktikum statistik diharapkan dapat membantumahasiswa dalam mengolah dan menganalisis data dengan metode statistik. Materi-materipada Praktikum Statistik industri antara lain Statistik Deskriptif, membuatberbagai grafik dan diagram, Uji Keseragaman Data, Uji Hipotesis, Uji Distribusi (UjiChi Square dan Kolmogorov Smirnov), Anova (satu faktor dan dua faktor), Korelasi, dan Regresi, Statistik Multivariate. Dalam modul ini terdapat contoh-contoh yang dapat membantu mahasiswa dalam memahami materi yang telah disampaikan. Dari hasil praktikum ini diharapkan dapat membantu mahasiswa dalam mempelajari berbagai aplikasi statistik pada khususnya dalam dunia industri dan pada umumnya di masyarakat yang semakin berkembang. Setelah mempelajari modul ini, mahasiswa diharapkan mampu melakukan pengolahan data yang bersifatk statistikal dan menganalisis hasil data menggunakan *software* statistik yaitu SPSS (*Statistical Program for Social Science*).

1.2 Prasyarat Praktikum

Syarat yang harus dipenuhi oleh mahasiswa sebelum melakukan praktikum statistik industri adalah sebagai berikut:

- 1. Mahasiswa mampu mengoperasikan komputer.
- 2. Mahasiswa tidak asing dengan istilah-istilah komputer seperti mouse, klik ganda, klik kanan, enter dan sebagainya.
- 3. Mahasiswa disarankan telah mengambil mata kuliah APTI I untuk membuka wacana pengetahuan teknologi dasar.
- 4. Mahasiswa diwajibkan telah lulus dari mata kuliah Statistik Industri I.

1.3 Petunjuk Pemakaian Modul

Modul ini dapat digunakan mahasiswa dengan pertimbangan sebagai berikut:

- 1. Mahasiswa telah memiliki modul dan telah membaca modul sebelum mata kuliah dimulai.
- 2. Mahasiswa mempelajari serta mengidentifikasi isi modul yang diuraikan lebihrinci oleh dosen pengampu.
- 3. Mahasiswa dan dosen mendiskusikan materi untuk mencari penyelesaianterhadap kasus tertentu.
- 4. Mahasiswa menyimpulkan isi materi yang didiskusikan
- 5. Mahasiswa menjawab soal latihan yang diberikan
- 6. Pemberian pengayaan materi bagi mahasiswa yang telah memahami danmenyelesaikan soal latihan.
- 7. Memberikan tinjauan ulang terhadap materi sekaligus mengidentifikasi kesulitan-kesulitan mahasiswa dalam memahami materi.

1.4 Standar Kompetensi

Standar kompetensi yang harus dimiliki oleh mahasiswa (praktikan) dari praktikum statistik industri ini adalah sebagai berikut:

- 1. Mahasiswa mampu melakukan pengolahan data dengan software SPSS
- 2. Mampu melakukan analisis statistik deskriptif maupun inferensial dari data statistik yang didapatkan.
- 3. Mampu menarik kesimpulan, berdasarkan data statistik yang dibuat.

BAB II

PENGENALAN SOFTWARE SPSS (Statistical Program for Social Science)

2.1 Kompetensi Dasar

Setelah mempelajari bab ini, diharapkan mahasiswa dapat:

- 1. Mengetahui dan memahami proses penggunaan software SPSS
- 2. Dapat memahami beragam menu dan fungsi dari software SPSS
- 3. Mampu memahami pengaturan Variabel View
- 4. Mampu menginputkan data statistik pada Data View.

2.2 Indikator

- 1. Mempelajari penggunaan Software SPSS
- 2. Mempelajari cara penggunaan menu dan fungsi software SPSS
- 3. Mempelajari pengaturan worksheetsoftware SPSS
- 4. Input data pada software SPSS .

2.3 Landasan Teori

SPSS (Statistical Program for Social Science) adalah program aplikasi komputeruntuk menganalisis data statistik. Program ini hampir banyak digunakan untukmenganalisis data-data dari berbagai berbagai bidang bisnis dan *background* keilmuan. *Software* ini telah dikembangkan sejak sekitar tahun 1960 sebagai sistem statistik padakomputer mainframe oleh Norman H. Nie dan Dale Bent dari Standford University. Seiring dengan perkembangan teknologi software ini telah mengalami perubahan dan penyesuaian, baik dari segi utilitas, tampilan dan juga sistem operasi.SPSS merupakan salah satu sekian banyak software statistika yang telah dikenal luas dikalangan penggunaannya. Disamping masih banyak lagi software statistika lainnyaseperti Minitab, Microstat dan masih banyak lagi. SPSS sebagai Svastas, sebuah softwarestatistika yang banyak digunakan karena mempunyai banyak kelebihan, salah satukelebihannya adalah mudah dalam pengoperasiannya. Tampilan utama worksheet SPSS dibawah ini.

Gambar 2.1 Tampilan Worksheet SPSS

Keterangan :

- Menu bar adalah Kumpulan perintah perintah dasar untuk mengoperasikan SPSS. Perintah – perintah yang terdapat pada menu bar adalah File, Edit, View, Data, Transform, Analyze, Graphs, Utilities, Windows, dan Help. Menu yang terdapat pada SPSS adalah:
 - a. File

Isi dari perintah – perintah yang ada pada menu bar File disajikan dalam gambar dibawah ini.

Gambar 2.2 Tampilan Menu File

b. Edit

Untuk melakukan pengeditan pada operasi SPSS baik data, serta pengaturan atau option untuk konfigurasi SPSS secara keseluruhan. Tampilan dari perintah menubar Edit disajikan dalam gambar di bawah ini.

Edit	⊻iew	<u>D</u> ata	Transform
6	Jndo		Ctrl-Z
F	Redo		Ctrl-Y
X	Cu <u>t</u>		Ctrl-X
h g	Copy		Ctrl-C
CB E	este		Ctrl-V
Ē	Paste ⊻ar	iables	
-			accessore.
00	lear		Delete
 ▲ Ir	llear hsert Var	iable	Delete
27 (nsert V <u>a</u> r Insert Var	iable ses	Delete
	Jear hsert V <u>a</u> r hsert Cas jind	iable ies	Ctrl-F
2 ⊂ 1 = 1 1 =	Jear nsert V <u>a</u> r nsert Cas jind jind Ne <u>x</u> t	iable :es	Ctrl-F F3
	Dear Insert Var Ind Ind Next Geplace	iable :es	Ctrl-F F3 Ctrl-H
	Agar Insert Var Ind Ind Ne <u>x</u> t Geplace So to Cas	iable es	Ctrl-F F3 Ctrl-H

Gambar 2.3 Tampilan Menu Edit

c. View

Untuk pengaturan tambilan di layar kerja SPSS, serta mengetahui proses proses yang sedang terjadi pada operasi SPSS. Tampilan perintah menu bar View disajikan dalam gambar di bawah ini.

⊻iew	<u>D</u> ata	<u>T</u> ransform	<u>A</u> nalyze	\$
✓ Sta	atus Bar			
Ιo	olbars		•	
Me	nu Edito	r		
Eor	nts			
🖌 Gri	id <u>L</u> ines			
🥸 ⊻a	lue Labe	els		
🖬 Qu	stomize	Variable View	i	
Va	riables		Ctrl-T	

Gambar 2.4 Tampilan Menu View

d. Data

Menu data digunakan untuk melakukan pemrosesan data. Tampilan menu bar data disajikan pada gambar di bawah ini.

<u>D</u> ata	Transform	<u>A</u> nalyze	<u>G</u> raphs
🖌 De	fine <u>V</u> ariable I	Properties	
6 <u>C</u>	opy Data Prope	erties	
En Ne	w Custom Att	ri <u>b</u> ute	
🗟 De	fine Dates		
🔡 De	efine <u>M</u> ultiple R	esponse Se	sts
Va	alidation		,
🔡 Ide	entify Dyplicate	e Cases	
🃑 įde	entify Unusual	Cases	
By So	ort Cases		
📕 So	ort Varia <u>b</u> les		
🐖 Tr	a <u>n</u> spose		
Re	estructure		
Me	erge Files		•
	ggregate		
Or	t <u>h</u> ogonal Desi	gn	•
Co	ppy <u>D</u> ataset		
Sr	lit <u>F</u> ile		
<u> </u>	elect Cases		
1 w	eight Cases		

Gambar 2.5 Tampilan Menu Data

e. Transform

Menu transform dipergunakan untuk melakukan perubahan-perubahan atau penambahan data. Tampilan perintah dari menu bar Transform.

Transform	<u>A</u> nalyze	<u>G</u> raphs	Utilities	Add
Compute	e Variable			
x? Count V	alues withir	n Cases		
x•x Recode	into <u>S</u> ame \	/ariables		
*y <u>R</u> ecode	into Differer	nt Variables	s	
🖧 <u>A</u> utomat	ic Recode			
Visual B	jinning			
K Optimal I	Binning			
📕 Ran <u>k</u> Ca	ses			
🗎 Date and	d Time Wiza	rd		
🗠 Create T	ï <u>m</u> e Series.			
Replace	Missing <u>V</u> a	lues		
률 Random	Number <u>G</u> e	nerators		
🕒 Run Pen	ding <u>T</u> ransf	orms	Ctrl-G	20

Gambar 2.6 Tampilan Menu Transform

f. Analyze

Menu analyze digunakan untuk melakukan analisis data yang telah kita masukkan ke dalam komputer. Menu ini merupakan menu yang terpenting karena semuapemrosesan dan analisis data dilakukan dengan menggunakan menu ini. Tampilan perintah-perintah analyze pada menu Bar.

<u>A</u> nal	yze	Graphs	Utilities	Add			
F	Report	ts		•			
[Descr	iptive Statis	stics	•			
া	[ables	:		•			
(Compare Means						
S	<u>G</u> ener	al Linear M	odel	•			
¢	Gener	ali <u>z</u> ed Line	ar Models	•			
١	Mixed Models						
9	Correl	ate		•			
Ē	<u>R</u> egre	ssion		•			
L	oglin	ear		•			
٢	Veura	l Net <u>w</u> orks		•			
0	Classi	<u>f</u> y		•			
Ę	<u>)</u> ata F	Reduction		•			
9	Sc <u>a</u> le			•			
Ţ	<u>l</u> onpa	rametric Te	ests	•			
83	lime S	Series		•			
0	<u>S</u> urviv	al		•			
	vlissin	g Value Ar	nal⊻sis				
١	/l <u>u</u> ltipl	e Respons	e	•			
0	Comp <u>l</u>	ex Sample:	s	•			
9	Quality	/ Control		•			
S F	ROCIO	Cur <u>v</u> e					

Gambar 2.7 Tampilan Menu Analyze

g. Graph

Menu graph digunakan untuk membuat grafik, diantaranya ialah bar, line, pie, dll.

h. UTILITIES

Menu utilities dipergunakan untuk mengetahui informasi variabel, informasi file,dll.

i. ADD – ONS

Menu ad-ons digunakan untuk memberikan perintah kepada SPSS jika ingin menggunakan aplikasi tambahan, misalnya menggunakan aplikasi Amos, SPSS dataentry, text analysis, dsb.

j. WINDOWS

Menu windows digunakan untuk melakukan perpindahan (*switch*) dari satu file kefile lainnya.

k. HELP

Menu help digunakan untuk membantu pengguna dalam memahami perintah-perintah SPSS jika menemui kesulitan

2. Tools Bar

Tools bar merupakan Kumpulan perintah-perintah yang sering digunakan dalam bentuk gambar. Contoh tampilan tool bar, pada gambar di bawah ini.

Gambar 2.8 Tampilan Tools Bar

BAB III INPUT DATA

Worksheet software SPPS ada dua bagian yaitu bagian pertama adalah **Variabel View** yang berisi pengaturan input nama variabel–variabel dan bagian kedua disebutdengan **Data View** yang mana digunakan untuk tempat *entry* data. Pada data view, nama variabel akan berubah menyesuaikan pengaturan pada Variabel View. Tampilan worksheet variabel view di bawah ini.

Gambar 3.1 Tampilan Worksheet Variabel View

Pada gambar 3.1 di atas, terdapat sepuluh atribut variable yang perlu didefinisikan, yaitu:

- 1. *Name*, merupakan nama variabel yang akan ditampilkan di baris teratas pada tampilan data view, seperti nama, pendidikan, umur, jumlah penjualan, dsb.
- 2. *Type*, merupakan tipe variabel yang di pakai. Ada delapan tipe variabel dalam SPSS.Akan tetapi secara umum dapat digolongkan menjadi dua, yaitu variabel angka(*numeric*, *comma*, *dot*, *scientific*, *notation*, *date*, *dollar*, dan *custom currency*) danvariabel non angka (*string*).

◯ <u>C</u> omma	<u>W</u> idth:	8
○ <u>D</u> ot	Decimal <u>Places</u> :	2
○ Scientific notation		
◯ D <u>a</u> te		
🔿 Doļļar		
O Custom currency		

Gambar 3.2 Tampilan Kotak Dialog Type

- 3. Width, merupakan lebar kolom yang nilai defaultnya 8
- 4. *Decimals*, merupakan jumlah digit setelah koma
- 5. *Label*, merupakan penjelasan atribut variabel name yang muncul di dalam kotak dialog apabila anda melakukan analisis lebih lanjut.

6. *Value*, merupakan pengkodean di variabel. Contoh, program studi diberi kode 1 untuk Teknik Industri, kode 2 untuk Teknik Sipil, kode 3 untuk Teknik Elektro, dan kode 4 untuk Arsitektur. Langkah pengkodean di SPSS adalah klik sel di kolom *value* yang akan diberi pengkodean, maka akan muncul kotak dialog *value labels*.

√al <u>u</u> e:	4		Spelling
_abel:	Arsitektur		
	<u>A</u> dd	1.00 = "Teknik Industri"	
	Change	2.00 = "Teknik Sipil" 3.00 = "Teknik Elektro"	
	<u>R</u> emove		

Gambar 3.3 Kotak Dialog Value Lables

Tulis angka 1 di dalam *value* dan tulis Teknik Industri di dalam *label* kemudian klik **Add** maka akan muncul dalam kotak 1.00 = "Teknik Industri". Lakukan langkah yang sama untuk kode 2, 3, dan 4. Jika sudah selesai melakukan *input* kode di seluruh *value*, klik **OK**.

- 7. Missing, menetapkan nilai khusus data sebagai user missing.
- 8. Columns, mempunyai fungsi seperti width
- 9. Align, merupakan posisi data dalam cell
- 10. *Measure*, merupakan tipe data yang digunakan. Secara otomatis SPSS akan memilih SCALE untuk tipe *numeric*, sedangkan untuk tipe string terdapat dua pilihan, yaituORDINAL atau NOMINAL.Worksheet untuk **data view** digunakan sebagai data editor untuk memulai inputdata. Tampilan worksheet **data view** di bawah ini.

Eile	Edit	<u>V</u> iew	<u>D</u> ata	Transform	<u>A</u> nalyze	<u>G</u> raphs	Utilitie
00	3 🗛		-	• 🔚 🖬	? 🐴	•	
13:			7				
1			Nama	Pemilil	han_Prodi	Bobot	Nilai
	1	Sari		Teknil	< Industri	90)
	2	San	i	Teknił	< Industri	88	6
	3	San	dra	Tekr	nik Sipil	77	
	4	San	ti	Teknil	k Elektro	78	}
	5	San	tika	Ars	itektur	89	9

Gambar 3.4 Tampilan Worksheet Data View

BAB IV STATISTIK DESKRIPTIF

4.1 Komptensi Dasar

Kompetensi dasar yang harus dimiliki oleh mahasiswa setelah mempelajari statistik desktiptif adalah sebagai berikut:

- 1. Mengetahui dan memahami jenis analisis statistik.
- 2. Dapat memahami pengolahan data dengan analisis statistik deskriptif.
- 3. Mampu memahami dan mengambil kesimpulan dari hasil pengolahan dengan analisis statistik deskriptif.

4.2 Indikator

Indikasi dari materi statistik deskriptif ini untuk mahasiswa adalah sebagai berikut:

- 1. Mempelajari penggunaan Software SPSS
- 2. Mempelajari cara penggunaan menu dan fungsi software SPSS
- 3. Mempelajari pengaturan worksheet software SPSS
- 4. Input data pada software SPSS
- 5. Mempelajari penggunaan aplikasi analisis statistik deskriptif

4.3 Landasan Teori

Statistika dibedakan menjadi dua bagian, yaitu :

- 1. Statistika deskriptif, yaitu statistika yang berusaha untuk menjelaskan danmenggambarkan karakteristik data, seperti mencari rata-rata, standar deviasi, median, dan lain-lain.
- 2. Statistika inferensia, yaitu statistik yang berusaha untuk memperlihatkan, meramalkan karakteristik data dari data yang tersedia.Pengukuran deskriptif pada dasarnya adalah memaparkan secara numerik dua hal pokok pengukuran data, yaitu (1) tendensi sentral dan (2) disperse. SPSS mengkategorikan analisis statistik deskriptif di dalam 5 kategori yang terdapat pada menu utama analyze, pada menu tersebut memiliki beberapa sub menu yaitu :
 - a. Frequencies

Frequencies membahas mengenai penjabaran ukuran statistika deskriptif seperti mean, median, ragam, kuartil, persentil, dan lain-lain.

b. Descriptives

Descriptive antara lain berfungsi untuk mengetahui skor Z dari suatu distribusi data dan untuk menguji apakah suatu data menyebar normal atau tidak.

c. Explore

Explore berfungsi untuk memeriksa lebih teliti suatu data. Selain dari alat untuk menguji apakah suatu data menyebar normal atau tidak, sub menu ini juga terdapat fasilitas untuk membuat diagram box – plot dan diagram batang daun (*steam and leaf plot*).

d. Crosstabs

Crosstabs digunakan untuk menyajikan deskriptif data dalam bentuk tabel silang yang terdiri atas baris dan kolom, selain itu juga berisi untuk menguji hubungan antara baris dan kolom.

e. Ratio Ratio menggambarkan rasio antara dua variabel skala.

4.4.Studi Kasus 1. Entry Data

Data masukan dalam pengolahan statistik deskriptif ini adalah data yang memiliki beberapa variabel untuk diketahui karakteristik dari masing-masing variabel tersebut berdasarkan jumlah yang ada, seperti rata-rata, standar deviasi, media, modus dan lain-lain. Berikut merupakan contoh data yang dapat digunakan dalam pengolahan statistik deskriptif.

Hari Kerja	Bahan Baku	Hasil Produksi	Pemakaian Batu Bara	Limbah Onggok	Limbah Kulit Tanah
1	2245	270	47	431	95
2	2090	257	47	405	89
3	1745	171	45	365	80
4	1594	272	30	244	54
5	1820	250	47	406	89
6	1424	262	43	357	79
7	1612	262	45	392	86
8	1584	251	45	374	82
9	1713	206	43	377	83
10	1723	265	36	294	65
11	1847	260	46	378	83
12	1759	237	45	335	86
13	1742	241	41	341	74
14	1882	255	42	360	75
15	1621	252	44	316	79
16	1850	257	44	351	70
17	1983	280	45	401	77
18	1250	244	49	348	86
19	2111	233	42	332	77

Tabel 4.1 Data uji statistika deskriptive

Hari Kerja	Bahan Baku	Hasil Produksi	Pemakaian Batu Bara	Limbah Onggok	Limbah Kulit Tanah
20	2071	218	40	340	73
21	3004	277	38	395	75
22	2921	290	48	434	87
23	2944	307	50	416	95
24	2544	298	53	406	92
25	2387	295	52	462	90
26	2264	271	51	421	102
27	2733	290	47	432	93
28	2289	286	51	211	94
29	2789	259	42	231	90
30	3456	321	41	356	91
31	2134	267	43	235	92
32	2400	245	45	234	78
33	2387	214	51	209	77
34	3578	378	54	359	65
35	3451	342	52	347	74
36	3267	326	41	376	68
37	3470	358	45	358	95
38	3569	390	42	373	79
39	3267	341	44	357	87
40	3890	368	43	385	86

Data di atas adadalah data produksi tepung tapioka yang menghasilkan limbah onggok dan limbah kulit tanah.

2. Analisis Data

Langkah-langkah yang dilakukan untuk melakukan analisis statistik deskriptif adalah sebagai berikut:

Input data tabel di atas kedalam software SPSS

a. Klik **Analyze** pilih **Descriptive Statistics** selanjutnya pilih **Frequencies**, kemudain akan muncul kotak dialog Frequencies

Gambar 4.1 Kotak Dialog Analyze

b. Masukan variabel Hari kerja, bahan baku, hasil produksi, pemakaiana batu bara,limbah onggok dan limbah kulit kayu kedalam kotak variabel

s at ap

Gambar 4.2 Kotak Dialog Frequencies

c. Pilih **Statistic**, maka kotak dialog **Frequencies Statistics** muncul. Tetapkan parameter pengukuran dan klik **Continue**

Percentile values	Central Tendency
Quartiles	🗹 <u>M</u> ean
Cut points for: 10 equal groups	🗹 Me <u>d</u> ian
Percentile(s):	Mode
Remove	
	🔲 Va <u>l</u> ues are group midpoin
Dispersion	Distribution
🔽 Std. deviation 🥅 Minimum	Ske <u>w</u> ness
🔽 Variance 📃 Maximum	Kurtosis

Gambar 4.3 Kotak Dialog Frequencies Statstic

d. Pilih **Chart** apabila anda akan melakukan analisis secara grafis dan pilih tipe grafis yang dikehendaki lalu klik **Continue**

-Chart Type		
◎ N <u>o</u> ne		
O Bar charts		
Pie charts		
O <u>H</u> istograms:		
Show nor	mal curve on histo	gran
-Chart Values		
<u>Frequencies</u>	O Percentages	

Gambar 4.4 Kotak Dialog Frequencies Chart

 e. Klik Format untuk menentukan susuna format data. Secara default pilih Ascending Value (diurutkan dari kecil ke besar), lalu klik Continue dan OK

Order by	Multiple Variables
Ascending values	Ompare variables
© <u>D</u> escending values	Organize output by variables
Ascending counts Descending counts	Suppress tables with many categories Maximum number of categories: 10

Gambar 4.5 Kotak Dialog Frequencies Format

\

f. Hasil pengolahan data di atas adalah sebagai berikut:

Statistics								
		Hari_Kerj	Bahan_Bak	Hasil_Produ	Pemakaian_	Limbah_Ong	Limbah_Kulit	
		а	u	ksi	Batu_Bara	gok	_Tanah	
Ν	Valid	40	40	40	40	40	40	
	Missing	0	0	0	0	0	0	
Mean		20.50	2360.25	276.65	44.98	353.60	82.30	
Median		20.50	2189.50	266.00	45.00	359.50	83.00	
Mode		1 ^a	2387ª	257ª	45	357 ^a	86	
Percentile	25	10.25	1748.50	250.25	42.00	336.25	75.50	
s	50	20.50	2189.50	266.00	45.00	359.50	83.00	
	75	30.75	2938.25	297.25	47.75	399.50	90.00	

Tabel 4.3 Tabel Hasil Pengolahan

a. Multiple modes exist. The smallest value is shown

Dapat diketahui bahwa data yang digunakan sebanyak 40 data dengan nilai rata-rata untuk variabel bahan baku 2360,25, hasil produksi 276,65, pemakaian batu bara 44,98, limbah onggok 353,60, dan limbah kulit tanah 82,30 Begitu seterusnya sampai hasil persentil yang dihasilkan dari pengolahan 40 data tersebut.

3. Tugas Kelas

Lakukan pengujian ulang untuk mengetahui hasil rata-rata variable 50 data dibawah ini!

Hari	Komoditas	Hasil	Pemakaian	Limbah	Limbah		
Kerja	(Unit)	Pengolahan	Bahan Baku	Diolah	Akhir		
		(Kg)	(Kg)	Kembali	(Kg)		
				(Kg)			
1	10	91	34	12	6		
2	22	95	41	14	6		
3	24	82	32	14	5		
4	17	97	44	13	8		
5	27	67	30	20	9		
6	22	83	48	13	5		
7	21	61	34	10	5		
8	27	75	33	14	8		
9	22	65	41	17	8		
10	25	92	36	18	6		
11	14	67	49	10	8		
12	20	86	40	15	5		

Tabel 4.4 Kegiatan Produksi

Hari	Komoditas	Hasil	Pemakaian	Limbah	Limbah
Kerja	(Unit)	Pengolahan	Bahan Baku	Diolah	Akhir
		(Kg)	(Kg)	Kembali	(Kg)
13	25	60	45	(Kg)	10
13	14	88	45	14	10
14	14	77	41	11	5
15	15	61	41	19	5
10	10	96	32	11	5
18	10	65	50	11	6
19	12	68	44	20	9
20	20	95	50	17	10
21	24	91	33	14	7
22	19	92	42	14	6
23	16	67	32	14	7
24	29	95	35	17	8
25	23	76	39	20	5
26	23	89	34	10	8
27	13	98	38	13	10
28	19	73	40	15	9
29	20	66	50	13	7
30	17	60	48	16	6
31	12	60	39	19	5
32	25	68	40	14	9
33	14	99	39	10	7
34	26	81	39	14	9
35	27	96	37	20	8
36	22	79	50	10	8
37	11	76	41	15	6
38	22	87	50	13	8
39	27	76	49	16	7
40	27	67	43	17	10
41	16	62	47	18	5
42	24	98	33	11	9
43	14	62	42	17	7
44	10	96	30	15	8
45	16	96	48	19	8
46	19	75	30	16	7
47	16	69	37	11	10
48	12	75	34	10	7
49	13	70	40	20	8
50	24	80	33	18	6

LEMBAR KERJA PRAKTIKUM

Nilai	Materi	NIM	
	Tanggal	Nama	
	Dosen	Kelas	

Analisis Deskriptif

1. Data Entry

Data yang digunakan dalam analisis deskriptif ini sama dengan data pada analisis frekuensi yang sebelumnya telah dibahas, hanya saja langkahlangkah yang dilakukan berbeda dan dengan hasil yang berbeda pula. Berikut adalah langkah-langkah yang dilakukan dalam analisis deskriptitf:

a. Pilih menu **Analyze** lalu pilih **Statistic Descriptive** dan pilih **Descriptive**, maka akan muncul kotak dialog descriptive.

Analyze Direct Marketing	<u>G</u> raphs	Utilities	Window	Help
Reports	•	*		
Descriptive Statistics	*	123 Frequ	encies	
Ta <u>b</u> les	•	Desc	riptives	
Co <u>m</u> pare Means <u>G</u> eneral Linear Model Generali <u>z</u> ed Linear Mode)) Is)	A Explo	re stabs	
Mi <u>x</u> ed Models <u>C</u> orrelate Regression	F F F	<u>P</u> -P P <u>Q</u> -Q F	nots Plots	-
— - L <u>o</u> glinear Neural Networks	*	406	89)
Classify	•	392	86	5
Scale Nonnorametria Tasta	•	374	83	3
Forecasting	•	378	83	3
<u>Sulviva</u> Multiple Response	*	341	74	, 1
Missing Value Analysis Multiple Imputation	•	316	79)
Comp <u>l</u> ex Samples <u>Q</u> uality Control	+ +	351 401	70	7
ROC Curve		348	77	7

Gambar 4.6 Kotak Dialog Analize

b. Masukan variabel Before_Exp dan After_Exp kedalam kotak variabel (s)

HARI_KERJA BAHAN_BAKU HASIL_PRODUKSI PEMAKAIAN_BATU	Variable(s):	Options Bootstrap
Save standardized values as v	variables	

Gambar 4.7 Kotak Dialog Descriptive

c. Beri tanda centang pada **Save Standarized Value as Variables** dipojok kiri bawah kotak dialog kemudian klik **OK**

HARI_KERJA BAHAN_BAKU		Variable(s): Variable(s): LIMBAH_ONGGOK Variable(s):	Options Bootstrap
	*		
Save standardized value	es as vari	ables	

Gambar 4.8 Kotak Dialog Descrptive

d. Hasil pengolahan data sebagai berikut

	N	Minimum	Maximum	Mean	Std. Deviation			
Limbah_Onggok	40	209	462	353.60	63.829			
Limbah_Kulit_Tanah	40	54	102	82.30	10.029			
Valid N (listwise)	40							

Descriptive Statistics

Gambar 4.9Hasil Pengolahan Descriptives Statistics

2. Analisis Hasil

Dari hasil pengolahan di atas menunjukan bahwa nilai minimum dari variabel limbah onggok adalah 209, nilai maximum adalah 462, dengan nilai rata-rata 353,60 dan standar devisai 63,829. Sedangkan untuk nilai minimum variabel limbah kulit tanah adalah 54, nilai maximum adalah 102, dengan nilai rata-rata 82,30 dan standar deviasi 10,029.

4.5 Analisis Explore

1. Data Entry

Data yang digunakan dalam analisis deskriptif ini sama dengan data pada analisis frekuensi dan analisis deskriptif yang sebelumnya telah dibahas, hanya saja langkah-langkah yang dilkaukan berbeda dan dengan hasil yang berbeda pula. Berikut adalah langkah-langkah yang dilakukan dalam analisis explore:

a. Pilih menu **Analyze** lalu pilih **Statistic Descriptive** kemudian pilih **Explore**

Analyze	Graphs	Utilities	Add-ons	<u>W</u> indow	Help
Repo	ts		• 💿	99	
Desci	riptive Statis	tics	• 123	Erequencies	
Table	s		• Po	Descriptives	
Comp	are Means		Explore		
General Linear Model Generalized Linear Models			Crosstabs Ratio		
Corre	<u>C</u> orrelate <u>R</u> egression L <u>og</u> linear Neural Net <u>w</u> orks		• 🙍	<u>Q</u> -Q Plots	
Regre			÷Т	103.4	8
Login			•	90.1	
Neura				93.7	
Class	ify		•	96.4	
<u>D</u> ata I	Reduction		- N	98.6	
Scale			+	95.2	
Nonp:	arametric Te	ests	•	95.0	
Time :	Series		•	97.4	
Survi	val			97.4	
🖽 Missir	ng Value Ar	nalysis		101.6	
Multip	le Respons	e	•	101.2	
Comp	lex Samples	\$	•	97.5	
Qualit	y Control			92.2	
ROC	Cur <u>v</u> e			96.6	

Gambar 4.10 Kotak Dialog Analyze

b. Masukan variabel Limbah_Onggok ke dalam kotak **Dependent List** dan pindahkan variabel Bahan_Baku ke dalam kotak **Factor List**

HARI_KERJA HASIL_PRODUKSI PEMAKAIAN_BATU Zscore(LIMBAH_CN Zscore(LIMBAH_KU	Dependent List:	Statistics Plots Options Bootstrap
-Display @ Both © Statistics © F OK P	Label Cases by:	

Gambar 4.11 Kotak Dialog Explore

 c. Pilih Statistics, maka akan muncul kotak dialog Exlore Statistics. Tetapkan parameter uji secara default, Descriptive Convidence Interval for Mean 95% dipilih, lalu klik Continue

Explore: Statistics	
Descriptives	
M-estimators	
Outliers	
Percentiles	
Continue Cancel Help	

Gambar 4.12 Kotak Dialog Explore Statistics

d. Pilih **Plot**, kemudain akan muncul kotak dialog **Explore Plot**. Secara default pilih **box plot factor level together and steam and leaf** lalu klik **Continue** dan **OK**

Eactor levels together	Descriptive
O Dependents together	Histogram
© None	
Spread vs Level with Leven	e Test
 Normality plots with tests Spread vs Level with Leven None 	e Test
 Normality plots with tests Spread vs Level with Leven None Power estimation 	e Test
Normality plots with tests Spread vs Level with Leven Nong Power estimation Transformed Power:	e Test

Gambar 4.13 Kotak Dialog Explore Plots

1. Tugas Kelas

Lakukan pengujian ulang dan analisis untuk mengetahui hasil analisis frekuensi variabel 50 data dibawah ini!

Hari	Komoditas	Hasil	Pemakaian	Limbah	Limbah
Kerja	(Unit)	Pengolahan	Bahan Baku	Diolah	Akhir
		(Kg)	(Kg)	Kembali	(Kg)
				(Kg)	
1	10	91	34	12	6
2	22	95	41	14	6
3	24	82	32	14	5
4	17	97	44	13	8
5	27	67	30	20	9
6	22	83	48	13	5
7	21	61	34	10	5
8	27	75	33	14	8
9	22	65	41	17	8
10	25	92	36	18	6
11	14	67	49	10	8
12	20	86	40	15	5
13	25	60	45	14	10
14	14	88	31	11	9
15	19	77	41	13	6
16	15	61	44	19	5
17	10	96	32	11	5
18	12	65	50	11	6
19	17	68	44	20	9
20	20	95	50	17	10
21	24	91	33	14	7

Tabel 4.5 Kegiatan Produksi

Hari	Komoditas	Hasil	Pemakaian	Limbah	Limbah
Kerja	(Unit)	Pengolahan (Kg)	Bahan Baku	Diolah Kombali	Akhir (K_{α})
		(Kg)	(Kg)	(Kg)	(Kg)
22	19	92	42	14	6
23	16	67	32	14	7
24	29	95	35	17	8
25	23	76	39	20	5
26	23	89	34	10	8
27	13	98	38	13	10
28	19	73	40	15	9
29	20	66	50	13	7
30	17	60	48	16	6
31	12	60	39	19	5
32	25	68	40	14	9
33	14	99	39	10	7
34	26	81	39	14	9
35	27	96	37	20	8
36	22	79	50	10	8
37	11	76	41	15	6
38	22	87	50	13	8
39	27	76	49	16	7
40	27	67	43	17	10
41	16	62	47	18	5
42	24	98	33	11	9
43	14	62	42	17	7
44	10	96	30	15	8
45	16	96	48	19	8
46	19	75	30	16	7
47	16	69	37	11	10
48	12	75	34	10	7
49	13	70	40	20	8
50	24	80	33	18	6

LEMBAR KERJA PRAKTIKUM

Nilai	Materi	NIM	
	Tanggal	Nama	
	Dosen	Kelas	

 •••
 •••

4.6 Analisis Crosstabs

1. Data Entry

Data yang digunakan dalam melakukan pengolahan pada analisis crosstabs adalah hasil survey terhadap konsumen terhadap kualitas layanan, harga, lokasi dan fasilitas di Indomaret, Alfamart, dan DeaMart.

(1) Indomaret, (2) Alfamart, dan (3) DeaMart. Masing-masing variabel memiliki value, yaitu:

= Puas

= Tidak Puas

Dari data tersebut kemudian dilakukan pengolahan dengan langkah-langkah sebagai berikut:

a. Input data pada SPSS sebagai berikut

	Tabel 4.6 Hasil Pengumpulan Data						
Market	Pelayanan	Harga	Lokasi	Fasilitas			
2	1	2	2	1			
1	1	2	2	1			
3	1	1	2	1			
2	1	1	1	2			
1	2	1	2	1			
3	1	1	1	1			
2	1	1	2	1			
1	1	1	1	1			
2	1	1	1	2			
1	2	1	1	1			

24

Market	Pelayanan	Harga	Lokasi	Fasilitas
3	2	2	1	2
3	2	1	2	1

b. Ubah data pada kolom **Value** yang ada di **Variable View** sesuai dengan nilai dari variabel yang telah ditentukan

alue	e Labels –		
/al <u>u</u> e:			Spelling
abel:			
ſ	Add	1 = "Puas"	
Ē	Change	2 = "Tidak Puas"	
	Remove		

Gambar 4.15 Kotak Dialog Value

c. Pilih menu **Analyze** lalu pilih **Statistic Descriptive** dan pilih **Crosstabs**

Gambar 4.16 Kotak Dialog Analyze

d. Inputkan variabel Mini_Market kedalam kotak **Row** (s) dan inputkan variabel Pelayanan, Harga, Lokasi dan Fasilitas ke kotak **Column** (s).

Mini_Market	Exact
~	Statistics.
	C <u>e</u> lls
Column(s):	Eormat
Harga	-
Laver 1 of 1	
Previous Next	

Gambar 4.17 Kotak Dialog Crosstabs

e. Kemudian pilih **Statistic**, maka akan muncul kotak dialog **Crosstabs Statistic**, beri tanda centang pada **Chi-square**, pilih **Continue** dan klik **OK**

Chi-square	Correlations
Nominal	Ordinal
Contingency coefficient	Gamma
Phi and Cramer's V	Somers' d
Lambda	🗌 Kendall's tau-g
Uncertainty coefficient	Kendall's tau-g
Nominal by Interval	Карра
Eta	Rijsk
	McNemar
Cochran's and Mantel-Haer	nszel statistics
Test common odds ratio eq	uals: 1

Gambar 4.18 Kotak Dialog Crosstabs Statistics

2. Analisis Hasil

a. Hasil analisis crosstabs untuk kualitas pelayanan.

Count						
		Pelayanan				
		Puas	Tidak Puas	Total		
Market	Indomaret	5	3	8		
	Alfamart	8	2	10		
	DeaMart	8	4	12		
Total		21	9	30		

Crosstab

Gambar 4.19 Hasil Pengolahan Crosstabs Kualitas Pelayanan

Chi-Square Tests				
	\/alue	df	Asymp. Sig. (2-	
	Value		5,600	
Pearson Chi-Square	.754ª	2	.686	
Likelihood Ratio	.782	2	.676	
Linear-by-Linear	.009	1	.923	
Association				
N of Valid Cases	30			

a. 3 cells (50,0%) have expected count less than 5. The minimum expected count is 2,40.

Gambar 4.20 Hasil Pengolahan Chi-Square Kualitas Pelayanan

Dari hasil di atas menunjukan bahwa Alfamart dan DeaMart lebih memuaskan konsumen daripada Alfamart untuk kualitas pelayanan yang diberikan.

b. Hasil analisis crosstabs untuk harga terkait dengan harga produk yang tersedia

		Crosstap		
Count				
		Harga		
		Puas	Tidak Puas	Total
Market	Indomaret	6	2	8
	Alfamart	5	5	10
	DeaMart	8	4	12
Total		19	11	30

Gambar 4.21 Hasil Pengolahan Crosstabs Harga

	Value	df	Asymp. Sig. (2- sided)	
Pearson Chi-Square	.108ª	2	.948	
Likelihood Ratio	.108	2	.947	
Linear-by-Linear	.047	1	.829	
Association				
N of Valid Cases	30			

Chi-Square Tests

a. 3 cells (50,0%) have expected count less than 5. The minimum expected count is 2,93.

Gambar 4.22 Hasil Pengolahan Chi-Square Harga

Dari hasil di atas menunjukan bahwa DeaMart lebih memuaskan konsumen dari pada Alfamart dan Indomaret untuk harga produk yang tersedia.

c. Hasil analisis crosstabs untuk lokasi

Count

Crosstab

Codifi				
		Lokasi		
		Puas	Tidak Puas	Total
Market	Indomaret	5	3	8
	Alfamart	6	4	10
	DeaMart	8	4	12
Total		19	11	30

Gambar 4.23 Hasil Pengolahan Crosstabs Lokasi

Chi-Square Tests				
			Asymp. Sig. (2-	
	Value	df	sided)	
Pearson Chi-Square	.108ª	2	.948	
Likelihood Ratio	.108	2	.947	
Linear-by-Linear	.047	1	.829	
Association				
N of Valid Cases	30			

a. 3 cells (50,0%) have expected count less than 5. The minimum

expected count is 2,93.

Gambar 4.24 Hasil Pengolahan Chi-Square Lokasi

Dari hasil di atas menunjukan bahwa DeaMart memiliki lokasi lebih strategis untuk dijangkau oleh konsumen dibandingkan Indomaret dan Alfamart. d. Hasil analisis crosstabs untuk fasilitas

Count						
		Fa				
		Puas	Tidak Puas	Total		
Market	Indomaret	6	2	8		
	Alfamart	7	3	10		
	DeaMart	8	4	12		
Total		21	9	30		

Crosstab

Gambar 4.25 Hasil Pengolahan Crosstabs Fasilitas

	Value	đf	Asymp. Sig. (2-	
	value	u	sided)	
Pearson Chi-Square	.159ª	2	.924	
Likelihood Ratio	.161	2	.923	
Linear-by-Linear	.151	1	.697	
Association				
N of Valid Cases	30			

Chi-Square Tests

a. 3 cells (50,0%) have expected count less than 5. The minimum expected count is 2,40.

Gambar 4.26 Hasil Pengolahan Chi-Square Fasilitas

Dari hasil di atas menunjukan bahwa fasilitas yang tersedia dan dapat dinikmati oleh konsumen lebih memuaskan fasilitas yang ada di DeaMart dibandingkan dengan fasilitas yang tersedia di Alfamart dan Indomaret.

3. Tugas Kelas

Lakukan analisis fasilitas Minimarket diatas dengan 50 konsumen!

LEMBAR KERJA PRAKTIKUM

Nilai	Materi	NIM	
	Tanggal	Nama	
	Dosen	Kelas	

BAB V UJI NORMALITAS DAN KESERAGAMAN DATA

5.1 Kompetensi Dasar

Kompetensi dasar yang harus dimiliki oleh mahasiswa setelah mempelajari uji normalitas dan keseragaman data adalah sebagai berikut:

- 1. Mengetahui dan memahami jenis analisis statistik
- 2. Dapat melakukan pengolahan data dengan uji kenormalan dan keseragaman data
- 3. Mampu memahami dan mengambil kesimpulan dari hasil pengolahan dengan analisis statistik.

5.2 Indikator

Indikasi dari materi uji normalitas dan keseragaman data ini untuk mahasiswa adalah sebagai berikut:

- 1. Mempelajari penggunaan Software SPSS
- 2. Mempelajari cara penggunaan menu dan fungsi software SPSS
- 3. Mempelajari pengaturan worksheet software SPSS
- 4. Input data pada software SPSS
- 5. Mempelajari penggunaan aplikasi analisis uji normal dan keseragaman data.

5.3 Studi Kasus

1. Entry Data

Berikut merupakan data dari anggota grup lawak Three Stooges (Curly, Larry dan Moe) berdasarkan tingkat *Brain Damage* dan *Stupidity Index* yang dimiliki ketiga anggota tersebut. Kemudian akandigunakan untuk melakukan analisis menggunakan uji normalitas dan keseragaman data

File	Edit	View	Data	Transform An	alyze	Direct Marketin	ng
2) 🛛	🖡 🗠 🦳	M	E 1	
1 : Fa	vorite		1				
		Fa	worite	Stupidity_Inde	x Bi	ain_Damage	
1			1	2	3	64	
2			1	2	2	35	
3			1	2	6	24	
4			1	3	5	95	
5			1	4	2	34	
6			1	5	4	75	
7			1	7	5	16	
	8		1	6	8	54	
	9		1	9	4	25	
	10		1	2	1	77	
	11		2	6	4	42	
	12		2	5	2	55	
1	13		2	7	8	65	
14			2	5	6	54	
-	15		2	2	5	24	
16			2	4	1	65	
17			2	3	5	24	
18			2	7	8	84	
	19		2	6	9	57	
1	20		2	4	5	36	
:	21		3	6	5	41	
22			3	5	4	52	
23			3	5	6	34	
		1		1000000100000			
Data	i View	Variat	ole View				

Gambar 5.1 Data Pengolahan Uji Normalitas dan Keseragaman Data
2. Analisis Data

Untuk melakukan uji normalitas dan uji keseragaman data, langkah-langkah yang harus dilakukan adalah sebagai berikut:

a. Pilihlah menu **Analyze** lalu pilih **Descriptive Statistic** selanjutnya pilih **Explore** kemudian akan muncul kotak dialog Explore.

Gambar 5.2 Kotak Dialog Analyze

b. Pindahkan variabel brain_damage dan stupidity_index ke kolom
 Dependent List dan variabel Favorite ke kolom Factor List

Explore	×	B Explore
Image Image Image	Statistics Pidgs Qutions	Dependent List Statistics Vrain_damage Piots Statisticy_index Dependent List Eactor List: Dependent List Value Piots Value Dependent List Label Cases by: Label Cases by:
Display Both Statistics Plots OK Paste Reset Cancel	Help	Display O Both Statistics OK Paste Reset Cancel Help

Gambar 5.3 Kotak Dialog Explore

 c. Pilih Plots dan beri tanda centang pada Normality Plots with Test, kemudai Power Estimation yang terdapat pada ruang Spread vs Level with Levene Test kemudian pilih continue dan klik OK

	Descriptive
Eactor levels together	Stem-and-lear
O Dependents together	🗌 <u>H</u> istogram
O None	
None Power estimation Iransformed Power:	latural log 🔷

Gambar 5.4 Kotak Dialog Explore Plots

d. Hasil dari pengolahan data di atas adalah sebagai berikut:1. Test of Normality

Tests of Normality							
		Kolmogorov-Smirnov ^a		Shapiro-Wilk			
	favorite	Statistic	df	Siq.	Statistic	df	Siq.
brain_damage	Curly	.136	25	.200	.962	25	.450
stupidity_index	Curly	.098	25	.200'	.958	25	.368

* This is a lower bound of the true significance

Gambar 5.5 Hasil Pengolahan Uji Normalitas dan Keseragaman Data

Analisis hasil uji normalitas dilakukan dengan menggunakan nilai alpha (α) sebesar 0,05 sebagai alat ukur untuk menentukan data yang diolah termasuk kedalam data yang dikatakan normal atau tidak. Jika hasil signifikansi (Sig.) dari data yang diolah lebih besar dari nilai α , maka data tersebut termasuk data yang normal (Sig. > α), sedangkan jika nilai Sig. < α , maka data tersebut merupakan data yang tidak normal. Dari hasil di atas menunjukan bahwa a. Variabel brain_damage memiliki nilai sig. > α (0,200 > 0,05)

b. Variabel stupidity_index memiliki nilai sig. > α (0,200 > 0,05) Maka kedua variabel tersebut dapat dikatakan data yang normal dan dapat dilakukan pengolahan selanjutnya.

2. Hasil Uji Keseragaman Data

Uji keseragaman data dapat dilakukan menggunakan uji statistik deskriptif dengan menambahkan tanda centang pada pengolahan **Range**. Berikut merupakan hasil pengolahan uji keseragaman data.

Descriptive Statistics						
						Std. Deviation
	Ν	Range	Minimum	Maximum	Mean	
brain_damage	75	41	9	50	28.89	9.852
stupidity_index	75	64	0	64	28.52	11.894
Valid N (listwise)	75					

Gambar 5.6 Hasil Pegolahan Uji Keseragaman Data

Dari hasil di atas untuk melakukan analisis uji keseragaman data digunakan hasil minimum, maximum dan range.

- a. Variabel barin_damage dengan nilai minimum 9, nilai maximum 50 dan nilai range 41, maka dapat diketahui bahwa data tersebut adalah data yang seragam karena nilai range berada diantara nilai 9 50.
- b. sVariabel stupidity_index dengan nilai minum 0, nilai maximum 64 dan nilai range 64, maka dapat diketahui bahwa data tersebut adalah data yang seragam karena nilai range berada diantara nilai 0-64.

3. Tugas Kelas

Berikut ini adalah data hasil survey dari 10 orang mengenai tingkat populer, berbakat, dan menarik dari personil the Beatles, lakukan uji normalitas dan uji keseragaman data.

Keterangan:

1-6 Nama personil dan nilai 1-10 untuk masing-masing tingkatan.

Keterangan
1= John Lennon
2= Paul McCartney
3=George Harrison
4= Ringo Starr
5= Stuart Sutcliffe
6= Pete Best

Tabel 5.1 Keterangan Tugas Kelas

No	Anggota	Populer	Berbakat	Menarik
1	1	8	2	6
2	1	10	8	8
3	1	8	7	8
4	1	2	9	2
5	1	8	1	1
6	1	3	10	2
7	1	2	2	5
8	1	2	4	6
9	1	3	8	4
10	1	2	1	1
11	2	2	8	3
12	2	3	10	8
13	2	5	5	1
14	2	10	3	2
15	2	10	6	3
16	2	3	7	5
17	2	7	3	3
18	2	3	4	5
19	2	3	9	10
20	2	8	2	6
21	3	1	8	9
22	3	6	6	8
23	3	1	1	10
24	3	7	3	5
25	3	4	1	6
26	3	6	2	10
27	3	4	4	1
28	3	8	6	4
29	3	4	8	10
30	3	1	1	8
31	4	3	2	9
32	4	7	1	1
33	4	2	4	3
34	4	5	9	9
35	4	3	7	2
36	4	7	8	10
37	4	5	1	8
38	4	3	1	10
39	4	8	4	2

Tabel 5.2 Hasil Survey the Beatles

No	Anggota	Populer	Berbakat	Menarik
40	4	4	8	2
41	5	9	10	5
42	5	10	5	2
43	5	6	5	5
44	5	6	6	7
45	5	10	8	2
46	5	3	7	9
47	5	3	3	2
48	5	2	3	6
49	5	4	7	2
50	5	4	3	3
51	6	4	10	2
52	6	1	6	7
53	6	7	2	9
54	6	4	7	8
55	6	2	6	2
56	6	5	5	1
57	6	6	8	4
58	6	3	5	1
59	6	2	8	10
60	6	4	4	3

Nilai	Materi	NIM	
	Tanggal	Nama	
	Dosen	Kelas	

BAB VI UJI RELIABILITAS DAN VALIDITAS

6.1 Kompetensi Dasar

Kompetensi dasar yang harus dimiliki oleh mahasiswa setelah mempelajari uji reliabilitas dan valididtas adalah sebagai berikut:

- 1. Mengetahui dan memahami jenis analisis statistik
- 2. Dapat melakukan uji validitas dan reliabilitas pada data
- 3. Mampu memahami dan mengambil kesimpulan dari hasil pengolahan dengananalisis statistik.

6.2 Indikator

Indikasi dari materi uji reliabilitas dan validitas ini adalah sebagai berikut:

- 1. Mempelajari penggunaan Software SPSS
- 2. Mempelajari cara penggunaan menu dan fungsi *software* SPSS
- 3. Mempelajari pengaturan worksheet software SPSS
- 4. Input data pada software SPSS
- 5. Mempelajari penggunaan aplikasi analisis statistik uji validitas dan reliabilitas

6.3 Landasarn Teori

Uji validitas dan realiabilitas biasanya digunakan untuk menguji penelitian yangmenggunakan kuisioner dalam pengambilan datanya. Uji validitas adalah pengujian yangdilakukan guna untuk mengetahui seberapa cermat suatu *instrument* dalam mengukur apa yang ingin diukur, sedangkan uji reliabilitas yaitu untuk menguji konsistensi alat ukur, apakah hasilnya tetap konsisten jika pengukuran diulang. Item kuisioner yang tidak valid berarti tidak dapat mengukur apa yang ingin diukur sehingga hasil yang didapat tidak dapatdipercaya, sehingga item yang tidak valid harus dibuang atau diperbaiki. Sedangkan *instrument* kuisioner yang tidak reliabel maka tidak dapat konsisten untuk pengukuran sehingga hasil pengukuran tidak dapat dipercaya.

Tingkat reliabilitas dari pengujian dengan metode *alpha cronbach* diukur berdasarkan skala alpha 0 sampai dengan 1. Apabila skala tersebut dikelompokkan ke dalam lima kelas range yang sama, maka ukuran reliabilitas alpha dapat diinterpretasikan seperti pada tabel berikut.

8				
Alpha Cronbach	Tingkat Reliabilitas			
0,00-0,20	Kurang Reliabel			
0,201-0,40	Agak Reliabel			
0,401-0,60	Cukup Raliabel			
0,601-0,80	Reliabel			
0,801-1,00	Sangat Reliabel			

Tabel 6.1 Tingkat Reliabilitas

6.4 Studi Kasus

1. Entry Data

Berikut merupakan contoh data hasil pengisian kuesioner kepuasan pelayanan bagian operasional kampus 1 UTY terhadap 19 responden (mahasiswa). kuesioner berisi 10 pernyataan terkait dengan pelayanan yang dilakukan oleh karyawan di bagian operasional, kemudan dilakukan penilaian dengan 5 kriteria sebagai berikut:

- 1 = Kurang Setuju
- 2 = Cukup Setuju
- 3 = Setuju

Responden	Bentuk dan Tampilan	Fitur	Kecepatan	Varian
1	1	1	2	1
2	3	2	2	1
3	3	2	1	1
4	3	2	3	1
5	2	3	3	2
6	1	1	1	3
7	1	2	3	1
8	1	1	2	1
9	2	1	1	3
10	2	1	3	1
11	1	3	3	3
12	1	1	3	3
13	1	3	1	3
14	2	1	3	2

Tabel 6.2. Data Uji Validitas dan Reliabilitas

Responden	Bentuk dan Tampilan	Fitur	Kecepatan	Varian
15	2	2	1	1
16	3	2	1	2
17	3	2	1	1
18	1	1	2	2
19	2	3	1	1
20	2	1	3	2
21	2	3	3	1
22	2	2	2	3
23	3	2	3	2
24	2	1	1	1
25	3	2	1	1
26	3	2	2	2
27	3	1	1	3
28	1	2	1	1
29	2	3	3	3
30	1	2	1	3
31	2	2	1	2
32	2	3	2	3
33	2	3	3	2
34	2	1	2	3
35	1	3	3	3
36	3	3	3	1
37	3	3	3	1
38	1	2	2	1
39	3	1	2	1
40	2	2	3	3
41	1	2	3	3
42	1	2	1	2
43	1	3	3	2
44	2	3	2	3
45	2	3	1	2
46	3	1	3	3

Responden	Bentuk dan Tampilan	Fitur Kecepatan		Varian
47	2	2	3	1
48	2	1	1	3
49	3	1	3	3
50	1	3	1	3

2. Analisis Hasil

Berikut merupakan langkah-langkah dan analisis hasil dari pengolahan uji reliabilitas dan validitas menggunakan SPSS16:

- a. Menggunakan Corerlation Product Moment untuk menguji validitas
- b. Menjumlahkan data yang akan di uji dengan menggunakan **Transform** kemudian pilih **Compute** lalu pilih variabel yang akan dijumlahkan dan ketik nama variabel yang menjadi tujuan (Total) lalu klik **OK**

Transform	Analyze	<u>G</u> raphs	Utilities	Ado
Compute	e Variable			
x? Count V	alues withir	n Cases		
x-x Recode	into <u>S</u> ame \	/ariables		
x•y <u>R</u> ecode	into Differer	nt Variables	s	
ky Automat	ic Recode			
Visual E	jinning			
🔀 Optimal I	Binning			
🔰 Ran <u>k</u> Ca	ises			
Date and	d Time Wiza	rd		
🗠 Create 1	ï <u>m</u> e Series.			
Replace	Missing <u>∨</u> a	lues		
🗗 Random	Number <u>G</u> e	nerators		
Run Pen	ding <u>T</u> ransf	orms	Ctrl-C	}

Gambar 6.1 Kotak Dialog Transform

Fitur Kecepatan Varian		Function group:
	- <= >= 4 5 6 • = ~= 1 2 3 / & 1 0 . = ~ () Delete	Aithmetic CDF & Noncentral CDF Conversion Current Date/Time Date Arithmetic Date Creation Functions and Special Variables
(optional case selection c	pndition)	

Gambar 6.2 Kotak Dialog Compute Variable

c. Lakukan korelasi denganc ara pilih **Analyze** lalu pilih **Corelate** kemudian pilih **Bivariate** dan pilih **Pearson Corelation** dan masukan smeua variabel yang akan diuji (termasuk variabel N Total) kedalam kotak variabel (s) lalu klik **OK**

<u>A</u> nalyze	<u>G</u> raphs <u>U</u> tilities	Add-ons	Window E	lel
Repor	ts	۰ 🗞	00	
Descr	iptive Statistics	•		-
Tables	5		D4	
Comp	are Means	•	4	-
Gener	al Linear Model	•	4	
Gener	alized Linear Models		5	
Mixed	Models		5	
Correl	ate	► 5	<u>B</u> ivariate	
Regre	ssion	► 123	Partial	
Loglin	ear	+ δ	Distances	
Neura	l Net <u>w</u> orks	• T	4	
Classi	tv	•	4	
<u>D</u> ata F	Reduction	•	3	
Scale		•	4	
Nonpa	arametric Tests	+	4	
Time S	Series	•	4	
Surviv	/al	•	2	
📴 Missir	ig Value Anal⊻sis…		5	
Multipl	e Response	•	4	
Comp	ex Samples	•	2	
Qualit	y Control	•	3	
ROC (Cur <u>v</u> e		5	

Gambar 6.3 Kotak Dialog Analyze

d. Berikut merupakan hasil dari uji validitas terhadap hasil kuesioner dengan 50 responden dari 4 pernyataan.

Correlations

[DataSet0]

	Correlations						
		responden	Bentuk_dan_ Tampilan	Fitur	Kecepatan	Varian	N_Total
responden	Pearson Correlation	1	.032	.200	.061	.313	.995**
	Sig. (2-tailed)		.824	.164	.676	.027	.000
	Ν	50	50	50	50	50	50
Bentuk_dan_Tampilan	Pearson Correlation	.032	1	067	.033	237	.067
	Sig. (2-tailed)	.824		.644	.821	.097	.643
	Ν	50	50	50	50	50	50
Fitur	Pearson Correlation	.200	067	1	.117	.000	.248
	Sig. (2-tailed)	.164	.644		.418	1.000	.083
	Ν	50	50	50	50	50	50
Kecepatan	Pearson Correlation	.061	.033	.117	1	.026	.126
	Sig. (2-tailed)	.676	.821	.418		.858	.382
	Ν	50	50	50	50	50	50
Varian	Pearson Correlation	.313	237	.000	.026	1	.348
	Sig. (2-tailed)	.027	.097	1.000	.858		.013
	Ν	50	50	50	50	50	50
N_Total	Pearson Correlation	.995**	.067	.248	.126	.348	1
	Sig. (2-tailed)	.000	.643	.083	.382	.013	
	Ν	50	50	50	50	50	50

*. Correlation is significant at the 0.05 level (2-tailed).

**. Correlation is significant at the 0.01 level (2-tailed).

Gambar 6.4 Hasil Uji Validitas

Untuk menentukan hasil dari uji validitas bahwa data yang di uji valid atau tidak valid dilakukan berdasarkan jumlah pernyataan atau pertanyaan yang digunakan dalam kuesioner, dalam hal ini terdapat 4 (N=4) dengan tingkat signifikan 5% pada tabel r dengan rumus df=N-2 = 4-2= 2, maka nilai df=0,5494 yang dibandingkan dengan hasil *Pearson Corelation*pada kolom **Ntotal** untuk masing-masing pernyataan. Maka dari hasil uji Validitas di atas dapat dijelaskan sebagai berikut:

Bentuk dan Tampi	lan = 0,067 < 0,9500	\rightarrow	tidak valid
Fitur	= 0,248 > 0,9500	\rightarrow	tidak valid
Kecepatan	= 0,126 < 0,9500	\rightarrow	tidak valid
Varian	= 0,348 < 0,9500	\rightarrow	tidak valid

e. Untuk mengetahui reliabilitas hasil kesioner tersebut, langkah-langkah yang dilakukan adalah memilih **Analyze** lalu **Scale** kemudian pilih **Reliability Analysis**

Analyze Direct Marketing Grap	hs <u>U</u> tiliti	es <u>W</u> indow <u>H</u> e	lp		
Reports Descriptive Statistics		s 🖬 📰	≤≥ 🛄		9
Tables	•				
Compare Means	arian	N_Total	var	var	
General Linear Model					
Generalized Linear Models	1	6.00			
Mixed Models	1	10.00			
Correlate	1	10.00			
Regression	1	13.00			
Loginoor	2	15.00			
Loginear Neural Networks	3	12.00			
Neural Networks	1	14.00			
Classity	1	13.00			
Dimension Reduction	3	16.00			
Sc <u>a</u> le		eliability Analysis			
Nonparametric Tests	M	ultidimensional Unf	olding (PREF	SCAL)	
Forecasting	M	ultidimensional Sca	lina (PROXS	CAL)	
Survival		ultidimensional Sca	ling (ALSCAL	۰. ۱	
Multiple Response		22.00	ing (ALOOAL	-)	_
🌃 Missing Value Analysis	1	21.00			
Multiple Imputation	2	24.00			
Complex Samples	1	24.00			1
Quality Control	2	24.00			
	1	26.00			
	2	28 00			-

Gambar 6.5 Kotak Dialog Analyze

 f. Masukan semua variabel yang akan di uji (tidak termasuk variabel total), kemudian pilih Statistic pilih Scale dan Scale if Item Deleted kemudain pilik Continue dan OK

Gambar 6.6 Kotak Dialog Raliability Analysis dan RaliabilityAnalysis Statistics

g. Kemudian akan muncul hasi output sebagai berikut

Reliability Statistics					
Cronbach's Alphaª	N of Items				
079	4				

a. The value is negative due to
a negative average covariance
among items. This violates
reliability model assumptions.
You may want to check item
codings.

Gambar 6.7 Hasil Nilai Cronbach's Alpha

Berdasarkan Reliability Statistic terlihat bahwa nilai Cronbach's Alpha adalah -0,079 pada 4 N *of Items* pernyataan. Nilai tersebut berada di bawah range0,00-0,20 yang artinya bahwa pertanyaan kurang reliabel.

3. Tugas Kelas

Lakukan uji validitas dan reabilitas data penilaian dari ruang tunggu dalam rumah sakit berikut dan berikan hasil analisismu.

Responden	Kelembaban	Pencahayaan	Kenyamanan	Kebisingan
1	2	3	1	1
2	3	3	1	3
3	3	2	1	3
4	2	2	1	2
5	3	2	1	3
6	2	1	3	3
7	1	1	3	1
8	2	1	2	1
9	2	1	3	3
10	3	2	1	2
11	2	3	3	2
12	3	2	2	2
13	1	2	2	2
14	1	2	1	1
15	2	2	3	3
16	3	2	1	1
17	1	3	1	3
18	2	3	1	1
19	2	1	2	3
20	3	1	1	3
21	3	2	1	1
22	3	2	2	3
23	1	3	1	2
24	3	3	1	2

Tabel 6.3 Hasil Pengumpulan Data Rumah Sakit

Responden	Kelembaban	Pencahayaan	Kenyamanan	Kebisingan
25	1	3	1	2
26	1	3	1	2
27	1	3	3	3
28	3	2	1	3
29	2	3	1	3
30	2	2	3	2
31	3	3	3	1
32	3	2	3	1
33	3	2	2	1
34	1	2	2	2
35	2	1	1	3
36	2	2	3	3
37	3	1	1	2
38	3	1	2	1
39	1	3	2	1
40	2	3	1	2
41	2	1	3	3
42	1	3	1	1
43	2	1	3	1
44	2	2	2	2
45	3	2	2	3
46	2	2	1	1
47	2	3	2	1
48	1	2	3	2
49	2	1	2	2
50	1	1	3	1

Nilai	Materi	NIM	
	Tanggal	Nama	
	Dosen	Kelas	

BAB VII STATISTIK PARAMETRIK

7.1 Kompetensi Dasar

Kompetensi dasar yang harus dimiliki oleh mahasiswa setelah mempelajari statistik parametrik adalah sebagai berikut:

- 1. Mengetahui dan memahami jenis analisis statistik
- 2. Dapat melakukan berbagai uji dalam statistik parametrik
- 3. Mampu memahami dan mengambil kesimpulan dari hasil pengolahan dengan analisis statistik.

7.2 Indikator

Indikasi dari materi uji parametrik ini untuk mahasiswa adalah sebagai berikut:

- 1. Mempelajari penggunaan Software SPSS
- 2. Mempelajari cara penggunaan menu dan fungsi software SPSS
- 3. Mempelajari pengaturan worksheet software SPSS
- 4. Input data pada software SPSS
- 5. Mempelajari penggunaan aplikasi analisis statistik parametric

7.3 Landasan Teori

Uji statistik dapat dikelompokkan ke dalam 2 desain dasar penelitian, yaitu desainbetween subject dan within subject. Berikut ini pengelompokkan uji parametrik dalamSPSS dengan desain penelitian.

Desain	Uji Parametrik dalam SPSS
Within Subject	One Sample T-Test
Between Subject	Independet Sample T-Tes
Within Subject	Paired Sample T-Test
Between Subject	One way ANOVA, analisis varian untuk satu variabel independent
Between Subject	General linier model-univariate, analisis varian untuk dua atau lebih variabel independent
Gabungan antara Within Subject dengan Between Subject	General linier model-repeated measure, menganalisis varian dengan melakukan pengukuran yang sama beberapa kali pada setiap subject/cases/variabel within subject. Apabila melibatkan variabel tersebut akan membagi populasi menjadi beberapa kelompok

Fabel 7.1 Uji Parametrik dalam SP

1. One Sample T-Test

One sample T-test digunakan untuk menguji perbedaan rata-rata suatu sample dengan suatu nilai hipotesis.

Pengujian rata-rata satu sampel dimaksudkan untuk menguji nilai tengah atau rata-rata populasi μ sama dengan nilai tertentu μ 0, lawan hipotesis alternatifnya bahwa nilai tengah atau rata-rata populasi μ tidak sama dengan μ 0, jadi jika akan menguji:

Ho: $\mu = \mu$ o lawan H1: $\mu \# \mu$ o, Ho merupakan hipotesis awal.

Berikut merupakan data jumlah produksi berdasarkan pada tingkat pendidikan karyawan (1=SMK, 2=SMA) dan jumlah pesanan dari konsumen pada bulan Juni.

	3	1
Pendidikan	Jumlah	Jumlah
Terakhir	Produksi	Pesanan
1	347	265
1	336	279
1	351	299
2	331	279
2	313	262
2	307	282
2	301	277
2	306	294
2	336	273
2	304	290
2	317	284
2	325	283
2	350	286
2	308	266
1	305	300
1	350	288
1	311	285
2	333	288
2	302	266
2	318	272
2	304	267
1	326	262
1	350	294
1	328	285
2	334	272

Tabel 7.2 Data Uji One Sample T test

Pendidikan	Jumlah	Jumlah
Terakhir	Produksi	Pesanan
2	305	289
1	314	273
1	310	273
1	345	288
2	362	264

Langkah-langkah dalam melakukan ujian one T-test adalah sebagai berikut:

a. Input data ke dalam SPSS

```
b. Klik Analyze \rightarrow Compare Means \rightarrow One Sample T Test
```

jeniskelamin pendidikan jumlahlembur	•	Test Variable(s):	Options
		Test ⊻alue: 100	

Gambar 7.1 Kotak Dialog One Sample T test

- c. Masukkan variabel **jumlah produksi** Ke dalam kotak **test variabel** dan masukkan nilai **100** di kotak **test value**.
- d. Klik Options, maka kotak dialog one sample T test: options muncul. Tingkat kepercayaan 95% dan exclude case by analysis by analysis terpilih secara default.

Missing values _ *exclude case analysis by analysis* berarti hanya data yang berharga valid yang digunakan dalam analysis.

onfidence Interv	val: þ5	%
Missing Valu	es	
Exclude ca:	ses analysis by	analysis
-		

Gambar 7.2 Kotak dialog one sample T test: options

- e. Klik continue
- f. Klik OK
- g. Hasil Pengolahan One Sample T-Test

Tabel 7.3 Hasil Uji One Sample T-Test 1

One-Sample Statistics						
N Mean Std. Deviation Std. Error Mea						
Jumlah_Produksi	30	324.30	18.366	3.353		

Tabel 7.4 Hasil Uji One Sample T-Test 2

	Test Value = 0					
					95% Confidence Interval of the	
				Mean	Difference	
	t	df	Sig. (2-tailed)	Difference	Lower	Upper
Jumlah_Produksi	96.713	29	.000	324.300	317.44	331.16

Untuk mengetahui hasil uji One-Sampe T-Test dilakukan melalui beberapa tahapan, yaitu:

1. Penentuan hipotesis (H₀ dan H₁)

H₀: μ = rata-rata jumlah produk yang dihasilkan pada bulan Juni sama dengan 324,30 unit.

 $H_{1:} \mu \neq$ rata-rata jumlah produk yang dihasilkan pada bulan Juni tidak sama dengan 324,30 unit

- 2. Tingkat signifikan (α) 5%
- 3. Daerah kritis: jika t hitung > t tabel, maka tolak H₀, jika t hitung < α , maka tolak H₀
- Uji statistik: sig.= 0,000; t hitung= 96,713; t tabel = 2,04523 Maka t hitung > t tabel = 96,713> 2,04523
- 5. Keputusan: karena nilai sig. (2-tailed) < α dan t hitung > t tabel, maka tolak H₀
- Kesimpulan: jadi dengan tingkat signifikansi 5%, didapatkan kesimpulan bahwa rata-rata jumlah unit yang diproduksi pada bulan Juni tidak sama dengan 324,30 unit.

3. Tugas Kelas

Lakukan pengujian ulang terhadap data tabel 7.2 dengan tambahan 10 responden dari lulusan SMK

Nilai	Materi	NIM	
	Tanggal	Nama	
	Dosen	Kelas	

2. Independent Sample T Test

Independent Sample T Test digunakan untuk menguji signifikansi beda ratarata dua kelompok data dua kelompok data atau sampel yang independent. Misalkan anda melakukan pengamatan apakah ada perbedaan rata-rata jumlah produksi jarum suntik pada PT Sejahtera dibulan Januari berdasarkan tingkat pendidikan pekerja. Dalam beberapa hari dilakukan pengambilan data berikut:

Nama	Jenis	Pendidikan	Jumlah	Jumlah
	Kelamin	Terakhir	Produksi	Lembur
			(unit)	(unit)
Adi	Laki-laki	SMK	100	1000
Alif	Laki-laki	SMA	130	1300
Seli	Perempuan	SMK	110	1100
Aan	Laki-laki	PT	100	1000
Latif	Laki-laki	SMA	110	1100
Siti	Perempuan	SMA	105	1050
Devi	Perempuan	SMK	150	1500
Dea	Perempuan	SMK	190	1900
Roni	Laki-laki	SMK	200	2000
Roif	Laki-laki	SMA	160	1600
Diva	Perempuan	SMA	150	1500
Danu	Laki-laki	SMA	100	1000
Darwin	Laki-laki	PT	120	1200
Dono	Laki-laki	PT	140	1400
Ema	Perempuan	SMK	200	2000

Tabel 7.5 Data Uji Independent Sample T-Test

Langkah-langkah dalam melakukan uji independent sample T test adalah sebagai berikut:

- a. Input data ke dalam SPSS
- b. Klik Analyze \rightarrow Compare Means \rightarrow Independent Sample T Test

Gambar 7.3 Kotak Dialog Independent Sample T Test

- Masukkan variabel test yaitu Jumlah Produksi ke kotak test variable(s) dan masukkan variabel Jenis Kelamin ke kotak grouping variable.
- d. Klik **define groups**, maukkan nilai value variabal jenis kelamin di kotak **group 1 dan 2.**

Use specifie	d values	
Group <u>1</u> :	1	
Group <u>2</u> : [2	
◯ <u>C</u> ut point: [
Continue	Cancel	Help

Gambar 7.4 Kotak dialog define groups

- e. Klik continue
- f. Klik options, maka kotak dialog independent sample T tes: options muncul. Tingkat kepercayaan 95% dan exclude cases analysis by analysis terpilih secara default.

<u>C</u> onfidence Inter	val: þ5	%
Missing Valu	es	
• Exclude ca	ses analysis by a	analysis
0		

Gambar 7.5 Kotak Dialog Independent Sample T Test: Options

- g. Klik continue
- h. Klik OK
- i. Hasil Pengolahan Uji Independent Sampe T Test

Tabel 7.6 Hasil Uji Independent Sample T-Test

	Leve Equalit	ne's Test for y of Variances	-		t-tes	st for Equalit	y of Means		
					Sig.			95% Co	nfidence
					(2tailed)			Interva	l of the
	F	Sig.	t	df		Mean Difference	Std. Error Difference	Diffe	rence
								Lower	Upper
Jumlah_Pr Equal	.130	.724	-1.158	13	.268	-21.944	18.952	-62.888	18.999
assumed									
Equal variances not									
assumed			-1.120	9.656	.290	-21.944	19.586	-65.796	21.907

Independent Samples Test

Untuk mengetahui hasil uji Independent Sample T Test dilakukan melalui beberapa tahapan, yaitu: 1. Penentuan hipotesis (H₀ dan H₁)

- H₀: tidak terdapat perbedaan pada jumlah produksi jarum suntik di bulan Januari pada PT Sejahtera berdasarkan tingkat pendidikan terakhir pekerja.
- H_{1:} terdapat perbedaan pada jumlah produksi jarum suntik di bulan Januari pada PT Sejahtera berdasarkan tingkat pendidikan terakhir pekerja.
- 2. Tingkat signifikan (α) 5%
- Daerah kritis: jika sig. (2-tailed) >α, maka terima H₀ jika sig. (2-tailed) < α, maka tolak H₀
- 4. Uji statistik: sig.(2-tailed) = 0,724; α = 0,05 Maka sig. (2-tailed) > α = 0,724 > 0,05
- 5. Keputusan: karena nilai sig. (2-tailed) > α maka terima H₀
- Kesimpulan: jadi dengan tingkat signifikansi 5% dapat disimpulkan bahwa tidak terdapat perbedaan jumlah produksi jarum suntik dibulan Januari di PT Sejahtera berdasarkan tingkat pendidikan terakhir pekerja

Tugas Kelas

Nama	Jenis	Pendidikan	Jumlah	Jumlah
	Kelamin	Terakhir	Produksi	Lembur
			(unit)	(unit)
Sandra	Perempuan	PT	200	1050
Ana	Perempuan	SMA	202	1000
Sinta	Perempuan	SMK	205	998
Supri	Laki-laki	SMK	199	1011
Indra	Laki-laki	SMA	200	1005
Joko	Laki-laki	PT	210	1115
Lila	Perempuan	SMK	220	1002
Rina	Perempuan	SMK	240	1000
Rois	Laki-laki	РТ	199	989
Lutfi	Laki-laki	SMA	200	1023

Lakukan pengujian ulang terhadap tabel 7.5 dengan tambahan data berikut:

Nilai	Materi	NIM	
	Tanggal	Nama	
	Dosen	Kelas	

3. Paired Sample T Test

Paired sample T test adalah dua pengukuran pada subject yang sama (desain within subject) terhadap suatu pengaruh atau perlakuan tertentu. Ukuran sebelum dan sesudah mengalami perlakuan di ukur.

Paired sample T Test atau uji sampel berpasangan digunakan untuk menguji perbedaan rata-rata dari dua kelompok data atau sampel yang berpasangan.

Misalnya anda melakukan pengamatan di bagian produksi meja terhadap operator mesin bor yang sudah mengalami pelatihan dan belum mengalami pelatihan. Penilaian dilakukan dalam kinerja peningkatan jumlah produksi/hari. Diambil sampel selama 1 hari. Berikut ini adalah data hasil penelitiannya:

_
Sesudah Pelatihan
105
100
105
106
109
99
98
120
100
106
108
103
100
108
104

Tabel 7.7 Data Uji Paired Sample T-Test

Uji paired sample T test dapat dilakukan dengan langkah-langkah sebagai berikut:

a. Input data di atas ke dalam SPSS

b. Klik Analyze \rightarrow Compare Means \rightarrow Paired Sample T Test

		Paired V	ariables:			Ontions
🔗 sebelumpelatihan		Pair	Variable1	Variable2		Thursday
🔗 sesudahpelatihan		1	Sebelu	🔗 [sesuda		
		2				
					<u> </u>	
					†	
	*				2	

Gambar 7.6 Kotak Dialog Paired Sample T Test

- c. Blok **variabel sebelum dan sesudah** sehingga variabel tersebut keblok semua kemudian pindah ke kotak **paired variable** (s) dengan melakukan klik tombol panah.
- d. Klik options, maka kotak dialog options: paired sample T test muncul. Tingkat kepercayaan 95% dan exclude cases analysis by analysis terpilih secara default.

Confidence Interv	val: 🗦 %	
Missing Valu	es	
Exclude ca:	ses analysis by analys	is 🛛

Gambar 7.7 Kotak Dialog Paired Sample T Test: Options

- e. Klik continue
- f. Klik **OK**
- g. Hasil uji Paired Sample T Test
 - Tabel 7.8 Hasil Uji Sample T Test: Options

Paired	Samp	les	Test
	Jamp		

			Paired Diffe	rences				
				95% Co Interva Diffe	onfidence al of the erence			
		Std.	Std. Error					Sig.
	Mean	Deviation	Mean	Lower	Upper	t	df	(2tailed)
Pair 1 sebelum_								
pelatihan								
-								
sesudah_ pelatihan	2.733	28.164	7.272	-12.863	18.330	.376	14	.713

Untuk mengetahui hasil uji Paired Sample T Test dilakukan melalui beberapa tahapan, yaitu:

1. Penentuan hipotesis (H₀ dan H₁)

H₀: rata-rata jumlah produksi yang dihasilkan operator sebelum dan sesudah pelatihan mesin bor adalah sama

- H_{1:} rata-rata jumlah produksi yang dihasilkan operator sebelum dan sesudah pelatihan mesin bor adalah berbeda
- 2. Tingkat signifikan (α) 5%

Daerah kritis: jika t hitung > t tabel, maka tolak H_0

jika t hitung < t tabel, maka terima H₀

- 3. Uji statistik: nilai t hitung= 0,376; nilai t tabel= 1,76131 Maka t hitung < t tabel = 0,376 > 1,76131
- 4. Keputusan: karena nilai t hitung < t tabel, maka terima H₀
- 5. Kesimpulan: jadi dengan tingkat signifikansi 5% dapat disimpulkan bahwa rata-rata jumlah produksi yang dihasilkan operator sebelum dan sesudah pelatihan mesin bor adalah sama.

Tugas Kelas

Lakukan pengujian kembali apabila ditambah 10 karyawan tambahan dalam pelatihan berikut

Sebelum Pelatihan	Sesudah Pelatihan
110	250
105	249
150	285
109	269
111	295
109	225
145	255
135	260
150	270
128	235

Nilai	Materi	NIM	
	Tanggal	Nama	
	Dosen	Kelas	

4. One Way ANNOVA

Analisis varian satu variabel independent digunakan untuk menentukan atau menguji apakah rata-rata du atau lebih kelompok berbeda secara nyata.

Misalkan anda akan melakukan pengamatan pengaruh pengalaman kerja dengan kinerja jumlah produksi/hari pleh karyawan yang sudah bekerja 1 dan 2 tahun. Data yang dihasilkan sebagai berikut:

Keterangan 1=SD, 2=SMP, 3=SMA, 4=D1, 5=D2, 6=D3, 7=D4, 8=S1, 9=S2, dan 10=S3.

Tahun	Pendidikan Terakhir Yang Ditamatkan	Angkatan Kerja
1	1	4923639
1	2	18151754
1	3	31533029
1	4	21472821
1	5	19804914
1	6	11799733
1	7	3140091
1	8	10020840
1	9	23567890
1	10	45219072
2	1	4300140
2	2	15653745
2	3	32478422
2	4	21481275
2	5	20671183
2	6	12376565
2	7	3202427
2	8	10483940
2	9	29102839
2	10	18792039

Tabel 7.9 Data Uji One Way ANNOVA

Analisis varian untuk satu variabel independent dapat dilakukan sebagai berikut:

a. Input data di atas ke dalam SPSS

🛷 tahun	Dependent List:	Contrasts Post Hoc.
	•	Options Bootstrap
	Eactor	
	Pendidikan_terakh	nir

b. Klik Analyze \rightarrow Compare Means \rightarrow One Way ANNOVA

Gambar 7.9 Kotak Dialog One Way Annova

- c. Masukkan variabel **jumlah produksi** ke kotak **dependents list** dan masukkan variabel **pengalama kerja** ke kotak **factor.**
- d. Klik options dan pilih Descriptive dan Homogenity of Variance test.

Statistics
Descriptive
Homogeneity of variance test
Brown-Forsythe
<u>W</u> elch
Means plot
Missing Values
I Exclude cases analysis by analysis
© Exclude cases listwise

Gambar 7.10 Kotak Dialog One Way Annova: Options

- e. Klik Continue
- f. Klik OK

Tugas Kelas

Lakukan analisis apabila ditambah dengan tahun ke 3 dan ke 4 di seluruh jenjang dengan rata-rata Angkatan kerja 2000000-2500000 setiap tahunnya
Nilai	Materi	NIM	
	Tanggal	Nama	
	Dosen	Kelas	

BAB VIII STATISTIK NON PARAMETRIK

8.1 Kompetensi Dasar

Kompetensi dasar yang harus dimiliki oleh mahasiswa setelah mempelajari statistik non parametrik ini adalah sebagai berikut:

- 1. Mengetahui dan memahami jenis analisis statistik
- 2. Dapat melakukan berbagai uji dalam statistik non parametrik
- 3. Mampu memahami dan mengambil kesimpulan dari hasil pengolahan dengananalisis statistik.

8.2 Indikator

Indikasi dari materi statistik non parametrik ini adalah sebagai berikut:

- 1. Mempelajari penggunaan Software SPSS
- 2. Mempelajari cara penggunaan menu dan fungsi software SPSS
- 3. Mempelajari pengaturan worksheet software SPSS
- 4. Input data pada software SPSS
- 5. Mempelajari penggunaan aplikasi analisis statistik non parametric

8.3 Landasarn Teori

Uji statistik parametrik dilakukan di sampel terdistribusi normal. Apabila persyaratan tidak terpenuhi, maka terjadi penyimpangan data analisis menjadi tidak valid. Syarat uji statistik non parametric lebih longgar, yaitu tidak berdasarkan distribusi sampel sehingga uji ini sering disebut uji bebas distribusi. Uji statistik non parametrik yang dibahas pada modul iini adalah Chi Square, 1-Sample K-S: One sample Kolmogorov Smirnov, Two independent Sample Test, K- Independent Smple Test, Two Related Samples.

8.4 Kegiatan Praktikum

1. Chi Square

Prosedur test Chi Square untuk menguji suatu variabel bardasarkan kategori (analysis by categorical). Uji chi square suatu variabel atau chi square goodness fit test (uji khi kuadrat untuk kebebasan).

2. Uji Chi Square Test satu variabel

Digunakan untuk menguji apakah frekuensi data yang diamati dari suatu variabel kategorik sesuai dengan frekuensi harapan (*expected frequencies*).

3. Uji Chi Square Test Satu Variabel dengan Frekuensi Harapan Sama Misalnya produsen baju mengeluarkan 6 model baju baru. Diharapkan keenam model baju tersebut memiliki tingkat jual yang sama (H_0), setelah setengah tahun dilakukan pengamatan terhadap penjual 10 model tersebut. Berikut ini data penjualan baju tersebut di periode awal penjualan:

Model	Jumlah
Model 1	75
Model 2	88
Model 3	89
Model 4	110
Model 5	100
Model 6	120
Model 7	100
Model 8	130
Model 9	150
Model 10	125

Tabel 8.1 Data Uji Chi Square Test satu variabel

Langkah-langkah uji Chi Square satu variabel adalah sebagai berkut: a.

Input data di atas ke dalam SPSS

b. Klik Data -> Weight Cases

Gambar 8.1 Kotak Dialog Weight Cases

- c. Pilih **Weight cases** by dan masukkan variable **jumlah** terjual di dalam **kotak frequency variable**
- d. Klik OK

	Jumlah Exact.
Expected Range © Get from data Uge specified range Lower:	P Expected Values All categories equal Yalues: Add Change Remove

e. Klik Analysis → Non Parametrik Test → Chi Square

Gambar 8.2 Kotak Dialog Chi Square Test

- f. Masukkan variabel model ke kotak test variable list, pilih get from data di kotak expected range dan pilih all categories equal di kotak expected values.
- g. Klik **OK**

Tugas Kelas

Lakukan pengujian ulang dan analisis terhadap tambahan data dari table 8.1 berikut.

Model	Jumlah
Model 11	95
Model 12	110
Model 13	100
Model 14	120
Model 15	116
Model 16	119
Model 17	120
Model 18	99
Model 19	100
Model 20	105
Model 21	120

Model 22	115
Model 23	99
Model 24	105
Model 25	109
Model 26	120
Model 27	115
Model 28	110
Model 29	115
Model 30	120

Nilai	Materi	NIM	
	Tanggal	Nama	
	Dosen	Kelas	

.....

4. Uji Chi Square Test Satu Variabel dengan frekuensi Harapan Berbeda Pabrik pembuatan bubuk jahe menyatakan dalam setiap kantong kemasanya 1000 gram terdapat 30% warna coklat,20% kemasan warna hijau, 20% warna merah, 20% warna kuning, dan 10% warna biru. Seorang konsumen membeli 1 kemasan bubuk jahe tersebut dan di dalamnya terdapat 100 kemasan bubuk jahe dengan rincian warna sebagai berikut; 30 warna coklat, 20 warna hijau, 15 warna merah, 20 warna kuning, dan 15 warna biru. Gunakan taraf signifikan α =0,01, untuk menguji apakah distribusi warna kemasan bubuk jahe sesuai dengan pernyataan pabrik.

Langkah-langkah uji Chi Square satu variabel dengan frekuensi harapan berbeda adalah sebagai berikut:

Warna permen	Jumlah warna	Harapan
Coklat	30	30% x 100 = 30
Hijau	20	20% x 100 = 20
Merah	15	15% x 100 = 15
Kuning	20	20% x100=20
Biru	10	10% x 100 = 10
Putih	5	5% x 100 = 5
Total	100	

Tabel 8.2 Data Uji Chi Square Test satu variabel dengan frekuensi harapan berbeda

a. input data di atas ke dalam SPSS

Keterangan: variabel warna kemasan bubuk jahe diberi value: 1 = coklat; 2 = hijau; 3 = merah; 4 = kuning; 5 = biru, dan 6=putih.

b. Klik **Data** → **Weight Case**

💫 Warnakemasan 🔗 Harapan	 ○ <u>D</u>o not weight cases ○ <u>W</u>eight cases by Frequency Variable: ✓ Jumlahwarna
	Current Status: Weight cases by Jumlahwa

Gambar 8.3 Kotak Dialok Weight Case

c. Klik **OK**

d. Klik Analyze -> Non Parametric Test -> Chi Square Test

🔗 Jumlahwarna	Lest Variable List:	Exact
🔗 Harapan	•	Options
Expected Range ③ Get from data ○ Uge specified range	Expected Values All categories equal Values:	
Lower:	Add 30 Change 20 Remove 20 10	

Gambar 8.4 Kotak Dialog Chi Square Test

- e. Masukkan variable warna kemasan kedalam kotak Test Variable List.
 Pada kolom expected range pilih get from data dan pada kotak expected values pilih values.
- f. Klik OK.

Tugas Kelas

Lakukan pengyjian ulang dan analisis terhadap tabel 8.2 apabila terjadi tambahan 3 warna dengan total 150

Nilai	Materi	NIM	
	Tanggal	Nama	
	Dosen	Kelas	

5. Uji Chi Square Dua Variable

Uji chi square dua variable atau sering disebut uji chi square (X^2) untuk kebebasan (chi-square (X^2) test for independence) atau disebut juga contingency-table analysis digunakan untuk menguji apakah dua variabel kategorik bersifat independen atau dependen.

Seorang manajer produksi sedang meneliti apakah banyaknya produk cacat atau tidak cacat tergantung dari umur seorang pekerja. Sampel diambil dari 100 unit produk yang diproduksi selama satu bulan. Hasil dari pengambilan semple disajikan pada data di baawah ini:

Produk	Kelompok Usia (tahun)		
	18 - 30	31 – 35	36 – 45
Cacat	10	40	15
Tidak cacat	30	40	15

Tabel 8.3 Data Uji Chi Square Dua Variable

Apakah data di atas menunjukkan bahwa banyaknya produk cacat atau tidak tergantung pada usia pekerja? Gunakan α =0,05.

Langkah-langkah uji Chi Square dua variabel adalah sebagai berikut:

a. Input data di atas ke dalam SPSS

Produk	Usia	Frekuensi
Cacat	18 – 30	10
Cacat	31 – 35	40
Cacat	36 – 45	15
Tidak cacat	18 – 30	30
Tidak cacat	31 – 35	40
Tidak cacat	36 – 45	15

Tabel 8.4 Data Uji Chi Square Dua Variable

b. Klik Data -> Weight Case

🖋 Usia	 ○ Do not weight cases ○ Weight cases by Erequency Variable: ✓ Frekuensi
OK Baste	Current Status: Do not weight cases

Gambar 8.5 Kotak Dialok Weight Case

- c. Pilih weight case by, masukkan variabel frekuensi ke dalam kotak frequency variable
- d. Klik Analyze -> Descriptive Statistic -> Crosstabs

Frekuensi	Row(s):	Exact
THORAGING	✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓	Statistics.
		C <u>e</u> lls
	Column(s):	Eormat
	Preyjous Next	
] Display clustered bar	charts	

Gambar 8.6 Kotak Dialog Crosstabs

- e. Masukkan variabel **Produk** pada kotak **Row(s)**, variabel **Usia** pada kotak **Colom(s)**.
- f. Klik Cells, pilih observed dan expected pada kotak dialog counts

ed
dardized

Gambar 8.7 Kotak Dialog Crosstabs: Cell Display

- g. Klik Continue, maka kembali ke kotak Crosstabs
- h. Klik Statistic, maka muncul kotak dialog crosstabs: statistic

✓ Chi-square	Correlations
Nominal	Ordinal
Contingency coefficient	<u>G</u> amma
Phi and Cramer's V	Somers' d
Lambda	🦳 Kendall's tau- <u>b</u>
Uncertainty coefficient	Kendall's tau- <u>c</u>
Nominal by Interval	Kappa
Eta	Risk
	<u>M</u> cNemar
Cochran's and Mantel-Haer	nszel statistics
Cochr <u>a</u> n's and Mantel-Haer	<u>M</u> cNemar

Gambar 8.8 Kotak Dialog Crosstabs: Statistic

- i. Beri tanda centang chi square dan klik continue
- j. Klik OK

Tugas Kelas

Lakukan pengujian ulang dan analisis apabila ditambahkan rentang usia 46-55 dan 56-65 dengan frekuensi 25

Nilai	Materi	NIM	
	Tanggal	Nama	
	Dosen	Kelas	

6. 1-Sample K-S: One Sample Kolmogorov Smirnov

One sample Kolmogorov Smirnov digunakan untuk menguji nul hipotesis suatu sampel tentang suatu distribusi tertentu. Uji ini dilakukan dengan menemukan perbedaan terbesar (nilai absolute) antara dua fungsi distribusi kumulatif, yaitu distribusi yang berasal dari data dan distribusi secara teori matematika. Terdapat empat macam distribusi yaitu normal, uniform, poisson dan eksponensial. Dengan menggunakan data pada analisis frequency.

Langkah-langkah analisis One Sample Komogorov Smirnov: a. Input data ke dalam SPSS

			Jumlah	Jumlah
Nama	Jenis Kelamin	Pendidikan	Produksi (unit)	Lembur
Adi	Laki-laki	SMK	100	1000
Alif	Laki-laki	SMA	130	1300
Seli	Perempuan	SMK	110	1100
Aan	Laki-laki	SMA	100	1000
Latif	Laki-laki	SMA	110	1100
Siti	Perempuan	SMA	105	1050
Devi	Perempuan	SMK	150	1500
Dea	Perempuan	SMK	190	1900
Roni	Laki-laki	SMK	200	2000
Roif	Laki-laki	SMA	160	1600
Diva	Perempuan	SMA	150	1500
Danu	Laki-laki	SMA	100	1000
Darwin	Laki-laki	SMA	120	1200
Dono	Laki-laki	SMA	140	1400
Ema	Perempuan	SMK	200	2000

Tabel 8.5 Data Uji 1-Sample K-S

One-Sample Kolmogorov-Smirnov Test Test Variable List: Exact. 🔗 jumlahproduksi Jeniskelamin Options. D pendidikan 🔗 jumlahlembur * Test Distribution 🗹 Normal 🛛 🗹 Uniform Poisson 📝 Exponential Cancel ok Paste Reset Help

b. Klik Analyze -> Non Parametric Test -> 1 Sample K-S

Gambar 8.9 Kotak Dialog One Sample Komogorov Smirnov Test

- c. Masukkan variabel Jumlah Produksi ke dalam kotak test variable list. Pilih Normal Poisson, Unifrom, dan Exponential di kotak Test Distribution.
- d. Klik OK

7. Two Independent Sample Test

Test uji two independent tes digunakan untuk menetapkan apkah nilai variable tertentu berbeda di antara dua kelompok. Uji two independent sample test sama dengan uji independent sample T test dengan persyaratan yang lebih longgar.Terdapat dua kelonggaran persyaratan. Pertama, mampu digunakan untuk data ordinal dan kedua persyaratan distribusi normal tidak terpenuhi, disamping itu jumlah sample tidak terlalu ketat. Uji yang dilakukan pada two independent sample test ada dua yaitu uji Mann Whitney dan Wilcoxon untuk uji lokasi (dengan jumlah data antara kedua kelompok tidak sama dan uji Kolmogorov Smirnov untuk uji lokasi dan bentuk.

a. Uji Mann Whitney

Anda melakukan pengamatan terhadap pekerja operator mesin bubut berdasrkan latar belakang pendidikan SMK dan PT. Data hasil observasi adalah sebagai berikut:

Nama	Jenis Kelamin	Pendidikan	Jumlah Produksi (unit)	Jumlah Lembur
Adi	Laki-laki	SMK	100	1000
Alif	Laki-laki	SMA	130	1300
Seli	Perempuan	SMK	110	1100
Aan	Laki-laki	SMA	100	1000
Latif	Laki-laki	SMA	110	1100
Siti	Perempuan	SMA	105	1050
Devi	Perempuan	SMK	150	1500
Dea	Perempuan	SMK	190	1900
Roni	Laki-laki	SMK	200	2000
Roif	Laki-laki	SMA	160	1600
Diva	Perempuan	SMA	150	1500
Danu	Laki-laki	SMA	100	1000
Darwin	Laki-laki	SMA	120	1200
Dono	Laki-laki	SMA	140	1400
Ema	Perempuan	SMK	200	2000

Tabel 8.6 Data Uji Mann Whitney

Analisis Mann Whitney dapat dilakukan sebagai berikut:

- 1. Input data diatas ke dalam SPSS
- 2. Klik Analyze → Non Parametric Test → 2 Independent Sample

🖗 Jeniskelamin 🖗 jumlahlembur	Test Variable List:	E <u>x</u> act Options
	Crouping Variable: pendidikan(3 4)	
Test Type	Kolmogorov-Smirnov Z	
Moses extreme reaction	s 🔲 Wald-Wolfowitz runs	

Gambar 8.10 Kotak Dialog Two Independent Samples Test

- Masukkan variabel jumlah produksi ke dalam kotak test variable list. Masukkan pendidikan di kotak grouping variable dan pilih uji Mann Whitney U (jumlah sampel kedua kelompok berbeda) di kotak Test Type.
- 4. Klik **define groups**, masukkan nilai variabel terkait di kotak group 1 dan 2.

Two Indepe	endent Samples:	Defin 📃
Group <u>1</u> :	3	
Group <u>2</u> :	4	
Continue	Cancel	Help

Gambar 8.11 Kotak Dialog Two Independent Sample Test: Define Groups

- 5. Klik continue.
- 6. Klik OK

Tugas Kelas

Lakukan pengujian ulang terhadap table 8.5 dan 8.6 apabila ditambah 15 lulusan dari SMA dan SMK dengan jumlah produksi rata-rata 100-120 dan jumlah lembur 1400-2600

Nilai	Materi	NIM	
	Tanggal	Nama	
	Dosen	Kelas	

 •••••

8. Uji Kolmogorov Smirnov

Praktikan melakukan pengamatan terhadap operator mesin berdasrkan latar belakang pendidikan SMK dan SMA, dua kelompok sampe sama. Data hasil observasi adalah sebagai berikut:

		<u> </u>		
			Jumlah	Jumlah
Nama	Jenis Kelamin	Pendidikan	Produksi	Lembur
			(unit)	
Adi	Laki-laki	SMK	100	1000
Alif	Laki-laki	SMA	130	1300
Seli	Perempuan	SMA	110	1100
Aan	Laki-laki	SMK	100	1000
Latif	Laki-laki	SMA	110	1100
Siti	Perempuan	SMK	105	1050
Devi	Perempuan	SMK	150	1500
Dea	Perempuan	SMK	190	1900
Roni	Laki-laki	SMK	200	2000
Roif	Laki-laki	SMA	160	1600
Diva	Perempuan	SMK	150	1500
Danu	Laki-laki	SMA	100	1000
Darwin	Laki-laki	SMA	120	1200
Dono	Laki-laki	SMK	140	1400
Ema	Perempuan	SMA	200	2000

Tabel 8.7 Data Uji Kolmogorov Smirnov

Langkah-langkah untuk melakukan uji Komogorov Smirnov, pada dasarnya sama dengan pengujian sebelumnya, langakah-langkahnya adalah sebagai berikut

a. Input data di atas ke dalam SPSS

```
b. Klik Analyze -> Non Parametric Test -> 2 Independent Sample
```

🔗 Jeniskelamin	Test Variable List:	Exact
🐓 jumlahlembur	*	Options
	Grouping Variable:	
	Define Groups	
Test Type	✓ Kolmogorov-Smirnov Z	

Gambar 8.12 Kotak Dialog Two Independent Samples Tests

- Masukkan variabel jumlah produksi ke dalam kotak test variable list. Masukkan pendidikan di kotak grouping variable dan pilih uji Kolmogorov Smirnov.
- d. Klik **define groups**, masukkan nilai variabel terkait di kotak group 1 dan 2.

🏭 Two Independent Samples:			
Group <u>1</u> :	1		
Group <u>2</u> :	2		
Continue	Cancel	Help	

Gambar 8.13 Kotak Dialog Two Independent Sample Test: Define Groups

- e. Klik Continue
- f. Klik **OK**

Tugas Kelas

Lakukan pengujian ulang dan analisis terhadap tabel 8.7 apabila ditambah 15 lulusan dari SMA dan SMK dengan jumlah produksi rata-rata 100-120 dan jumlah lembur 1400-2600

Nilai	Materi	NIM	
	Tanggal	Nama	
	Dosen	Kelas	

9. K-Independent Samples Test

Uji K-Independent Samples Test sama dengan uji ANNOVA tetapi dengan persyaratan yang lebih longgar. Uji K independen dapat dilakukan dengan prasyarat, yaitu mampu digunakan untuk tipe data oridinal, distribusi normal tidak terpenuhi, dan jumlh smpel tidak terlalu ketat. Uji tersebut digunakan untuk menetapkan apakah nilai variabel tertentu berbeda pada dua atau lebih kelomppok.

Jenis uji K-independet Sample Test yang seing dilakukan aa dua metode yaitu Uji Kruskal Wallis H dan Uji Median.

a. Uji Kruskal Wallis

Uji Kruskal Wallis adalah analisis varian satu arah dengan rank. Uji ini bisa digunakan di data ordinal. Null hipotesis uji ini menyatakan multiple independent sample berasal dari populasi yang sama.

Praktikan melakukan pengendalian kualitas tiga produk baru yang baru diproduksi, pengendalian kualitas dilakukan dengan memberi rattig pada produk tersebut. Ratting bertipe data oridinal denga rentang 1 sampai 5. Nilai semakin tinggi menunnjukkan semakin tinggi kualitasnya. Berikut ini adalah data sampel produk tersebut:

Produk	Kepuasan
1	2.5
1	2
1	2
1	3.5
1	4
1	3
1	4.5
1	2
2	3.5
2	3
2	2
2	2
2	2
2	3.5
2	4
2	4
3	2
3	4.5

Tabel 8.8 Data UjiKruskal Wallis

Produk	Kepuasan
3	3
3	2
3	3.5
3	2
3	4
3	2
3	3

Variabel produk merupakan variabel yang diberi value 1= produk a; 2 = produk b; 3 = produk c

Analisis Uji Kruskal Wallis dapat dilakukan sebagai berikut:

- 1. Input data di atas ke dalam SPSS
- 2. Klik Analyze \rightarrow Non Parametric Test \rightarrow K- Independent Sample

		ist Variable List: [∲] kepuasan	E <u>x</u> act Options
	ार्थ वि वि	rouping Variable: roduk(1 3) Define Range	
Test Type Kruskal-Wallis H	Median		

Gambar 8.14 Kotak Dialog Test fos Several Independent Samples

- Masukkan variabel kepuasan ke dalam kotak test variable list, masukkan variabel produk pada kotak Grouping Variable dan pilih Uji Kruskal Wallis H
- 4. Klik **define range**, masukkan rentang nilai variabel produk pada kotak minimum dan maximum .

ange for Groupin	g Variable	
1i <u>n</u> imum: 1		
taximum: 3		

Gambar 5.15 Kotak Dialog Several Independent Sample Test: Define Range

5. Klik Continue

6. Klik **OK**

Tugas Kelas

Lakukan pengujian ulang terhadap tabel 8.8 dengan menambah 20 responden pada masing-masing penilaian produk dan lakukan analisis

Nilai	Materi	NIM	
	Tanggal	Nama	
	Dosen	Kelas	

b. Uji Median

Uji Median dipakai bila terdapat kelompok-kelompok data yang memiliki berbagai distribusi. Null hipotesis uji ini mengatakan dua atau lebih sample independent memiliki median yang sama. Praktikan melakukan pengamatan p pengaruh tingkat pendidikan terhadap kinerja produksi. Tingkat pendidikan dibagi kedalam 3 tingkatan yang berbeda. Praktikan melakukan sampling random terhadap operator yang pendidikan SMK, SMA dan PT dalam hal jumlah produksi.

Data sebagai berikut:

	Nilai
Produk	Kemasan
1	2.5
1	2.0
1	2.0
1	3.5
1	4.0
1	3.0
1	4.5
1	2.0
2	3.5
2	3.0
2	2.0
2	2.0
2	2.0
2	3.5
2	4.0
2	4.0
3	2.0
3	4.5
3	3.0
3	2.0
3	3.5
3	2.0
3	4.0
3	2.0
3	2.5
4	3.1

Tabel	8.9	Data	Uji	Median

	Nilai
Produk	Kemasan
4	2.5
4	2.1
4	1.8
4	2.4
4	2.9
4	4.1
4	3.9
4	2.7
4	4.2
5	3.2
5	4.1
5	3.9
5	3.6
5	3.5

Analisis uji median dapat dilakukan sebagai berikut:

1. Input data di atas ke dalam SPSS

$\operatorname{Kirk}\operatorname{Anaryze}\to\operatorname{Kon}\operatorname{I}\operatorname{anare}$	$\operatorname{tric} \operatorname{rest} \to \operatorname{IX}^{\bullet} \operatorname{IIIu}$	
Tests for Several Independent Sample	es	×
	est Variable List: Nilai_Kemasan Grouping Variable: Produk(2 5) Define Range	Exact Options
Test Type <u>K</u> ruskal-Wallis H <u>M</u> edian <u>J</u> onckheere-Terpstra		-
OK Paste Re	eset Cancel Help	

2. Klik Analyze \rightarrow Non Parametric Test \rightarrow K- Independent Sample

Gambar 8.16 Kotak Dialog Test for Several Independent Samples

 Masukkan variabel kepuasan ke dalam kotak test variable list, masukkan variabel produk pada kotak Grouping Variable dan pilih Uji Median. 4. Klik **define range**, masukkan rentang nilai variabel produk pada kotak minimum dan maximum.

E Several Independent Sample	\times
Range for Grouping Variable	
Mi <u>n</u> imum: 2	
Ma <u>x</u> imum: <mark>5</mark>	
Continue Cancel Help	

Gambar 8.17 Kotak Dialog Several Independent Sample Test: Define Range

- 5. Klik Continue
- 6. Klik **OK**

Tugas Kelas

Lakukan pengujian ulang pada 5 kemasan terbaru dari tabel 8.9 dengan rentan nilai yang sama dan lakukan analisis

Nilai	Materi	NIM	
	Tanggal	Nama	
	Dosen	Kelas	
c. Two Related Samples

Uji Two Related Samples sama dengan uji Paired Samples T test dengan prasayarat yang lebih longgar. Kelonggaran prasyarat tersebut adalah mampu digunakan baik untuk tipe data ordinal dan skala, apabila distribusi normal tidak terpenuhi, dan jumlah sampel juga tidak terlalu kuat.

Test Two Related Samples digunakan untuk menguji perbedaan nilai variabel berpasangan atau berhubungan. Ada dua uji yang dapat dilakukan pada two related samples yaitu uji Wilcoxon dan uji Mc Nemar.

Nama	Jenis Kelamin	Pendidikan	Jumlah Produksi (unit)	Jumlah Lembur
Adi	Laki-laki	SMK	100	1000
Alif	Laki-laki	SMA	130	1300
Seli	Perempuan	РТ	110	1100
Aan	Laki-laki	PT	100	1000
Latif	Laki-laki	SMA	110	1100
Siti	Perempuan	SMA	105	1050
Devi	Perempuan	SMK	150	1500
Dea	Perempuan	PT	190	1900
Roni	Laki-laki	SMK	200	2000
Roif	Laki-laki	PT	160	1600
Diva	Perempuan	SMK	150	1500
Danu	Laki-laki	SMA	100	1000
Darwin	Laki-laki	PT	120	1200
Dono	Laki-laki	PT	140	1400
Ema	Perempuan	SMK	200	2000

Tabel 8.10 Data Uji MRelated Samples

d. Uji Wilcoxon dan Sign

Praktikan melakukan pengamatan berpasangan tentang jumlah produksi sebelum dan sesudah diadakan pelatihan operator dibagian produksi suatu perusahaan. Responden diambil secara acak sebanyak 15 orang. Berikut data jumlah produksi sebelum dan sesudah pelatihan:

Sebelum	Sesudah
100	130
85	115
90	120
120	150
95	125
80	115
110	140
100	130
150	180
165	195
120	150
130	160
90	120
80	110
90	130

Tabel 8.11 Data UjiWilcoxon dan Sign

Uji Sign dan Wilcoxon dapat dilakukan sebagai berikut:

- 1. Input data di atas ke dalam SPSS
- 2. Klik Analyze \rightarrow Non Parametric Test \rightarrow 2 Related Sample Test

🔗 Sebelum 🔗 sesudah	Test Pairs: Pair Variable1 Variable2 1	Exact Option
	Test Type ✓ Witcoxon ✓ Sign McNemar Marcinal Homogeneity	↔

Gambar 8.18 Kotak Dialog Two Related Samples T Tests

3. Blok semua variabel sebelum dan sesudah, masukkan ke dalam

kotak test Pair(s) list, dengan klik tombol panah sehingga

muncul variabel sebelum dan sesudah di kotak tersebut. Beri tanda check pada **test type** yaitu **Wilicoxon dan Sign.**

4. Klik **OK**.

Tugas Kelas

Lakukan pengujian ulang pada tabel 8.11 apabila ditambah 15 responden dengan hasil sebelum dan sesudah dalam rentan 90-120 dan 130-150

Nilai	Materi	NIM	
	Tanggal	Nama	
	Dosen	Kelas	

e. Uji MC Nemar

Praktikan melakukan pengamatan terhadap keberhasilan bagian pemasaran dalam perusahaan memenuhi target bulanan sebelum dan sesudah pelatihan di armada penjualan di suatu perusahaan lain. Responden diambil secara random 15 orang dengan data sebagai berikut:

Sebelum	Sesudah
1	1
1	1
2	1
2	2
2	1
1	2
1	1
2	1
2	1
1	2
2	2
2	1
2	1
1	1
1	1

Tabel 8.12 Data Uji MC Nemar

Keterangan:

Variabel sebelum dan sesudah merupakan variabel dikotomi bertipe data nominal, namun diberi value pada variabel tersebut: 2 = tidak berhasil; 1 = berhasil

Langkah-langkah dalam melakukan uji MC Nemar adalah sebagai berikut:

1. Masukkan data di atas ke dalam SPSS

2. Klik Analyze \rightarrow Non Parametric Test \rightarrow 2 Related Sample Test

	 Test Pair	s:			Event
🔗 Sebelum	Pair	Variable1	Variable2		LZaci
🔗 sesudah	1	Sebelum]	🦉 [sesudah]	5	Options
	2				
				÷	
				→	
	 -Toet T	VPO -			
	iest i	ype			
		coxon			
		n			
	Mcl	Nemar			
	Mar	rginal Homogenei	ty		

Gambar 8.19 Kotak Dialog Two Related Samples T Tests

- Blok semua variabel sebelum dan sesudah, masukkan ke dalam kotak test Pair(s) list, dengan klik tombol panah sehingga muncul variabel sebelum dan sesudah di kotak tersebut. Beri tanda check pada uji MC Nemar di dalam Test Type.
- 4. Klik **OK**.

Tugas Kelas

Lakukan pengujian ulang terhadap tabel 8.12 apabila terjadi tambahan 25 orang dengan hasil sebelum dan sesudah bernilai 50% berhasil

Nilai	Materi	NIM	
	Tanggal	Nama	
	Dosen	Kelas	

BAB IX MULTIVARIATE ANALYSIS OF VARIANCE (MANOVA)

Sama dengan ANOVA, MANOVA merupakan uji beda varian. Bedanya, dalam ANAVA varian yang dibandingkan berasal dari satu variabel terikat, sedangkan pada MANOVA, varian yang dibandingkan berasal dari lebih dari satu variabel terikat.

Model MANOVA untuk membandingkan vektor mean sebanyak g adalah sebagai berikut:

MANOVA dengan SPSS mengikuti langkah-langkah yang hampir sama dengan ANOVA.

1. Entry Data

Entry data untuk MANOVA sama halnya dengan ANAVA, yakni variabel terikat (y) dimasukkan secara bersambung, dan kelompok dikenali dari variabel bebas (x). Hanya saja, dalam MANOVA terdapat lebih dari satu variabel terikat (y1, y2,

..., yn). Sebagai contoh, akan dianalisis data untuk menguji hipotesis:

1.1 Data background

Dataset ini diambil dari 75 orang dari *college frechmen* yang ditanyai dengan menggunakan kuisoner tentang anggota favorit dari *Three Stooges* (kelompok lawak dari Amerika Serikat). Kuisioner tersebut akan menunjukkan nilai *brain damage* dan *stupidity index*. Dari data tersebut dapat dilihat apakah terdapat perbedaan yang signifikan antara *fans* dari ketiga anggota *Three Stooges* (Curly, Larry, dan Moe) tersebut, apakah *fans* dari anggota *Three Stooges* tersebut berasal dari populasi yang sama. Berdasarkan tujuan penelitian tersebut metode statistik yang dipakai adalah MANOVA.

Berikut persamaan MANOVA:

$Y_1+Y_2=X$

Setelah dimasukkan ke form SPSS, data dalam form SPSS akan tampak sebagai berikut:

	favorite	brain_damage	stupidity_index	var
1	Curly	39	43	
2	Curly	28	36	
3	Curly	26	31	
4	Curly	16	18	
5	Curly	23	29	
6	Curly	40	37	
7	Curly	38	38	
8	Curly	42	46	
9	Curly	23	28	
10	Curly	22	21	
11	Curly	38	35	
12	Curly	31	26	
13	Curly	29	43	
14	Curly	45	51	
15	Curly	44	47	
16	Curly	26	18	
17	Curly	30	30	
18	Curly	31	35	
10		JI		
19	Curly	20	26	
20	Curly	27	44	
21	Curly	34	34	
22	Curly	38	28	
23	Curly	23	32	
24	Curly	28	26	
25	Curly	47	64	
26	Larry	31	21	
27	Larry	48	42	
28	Larry	25	43	
29	Larry	23	11	
30	Larry	10	8	
31	Larry	26	27	
32	Larry	18	20	
33		32		
34	Larry	13	U 24	
35	Larry		24	
37	Larry	28	27	
38	Larry	29	35	
39	Larry	13	23	
40	Larry	32	31	
41	Larry	21	28	
42	Larry	10	9	
43	Larry	41	36	
44	Larry	13	15	
45	Larry	40	37	
46	Larry	37	37	
47	Larry	9	14	
48	Larry	24	7	
49	Larry	32	8	
50	Larry	21	12	
51	Moe	27		
52	Moe	20	Z1 /1	
53	Moe	17	14	
alat -	MOG	47	40	

Gambar 9.1a Data Uji MANOVA

	favorite	brain_damage	stupidity_index	Var
71	Moe	19	20	
72	Moe	36	27	
73	Moe	32	19	
74	Moe	32	25	
75	Moe	27	19	
76				

Gambar 9.1b Data Uji MANOVA

2. Analisis Data

Menu MANOVA pada SPSS terletak di General Linear Model, dengan langkahlangkah sebagai berikut:

Analyze General Linear Model Multivariate

three stor	oges datasets.sav [DataSet	1] - SPSS Data Editor		
e <u>E</u> dit	<u>V</u> iew <u>D</u> ata <u>T</u> ransform	Analyze Graphs Utilities	Add-ons Window Help	
	🖬 🕌 रू ले	Reports Descriptive Statistics	 ▶ ♥ @ ♥ ▶ 	
	favorite	Tables	• index var	var
1	Curly	Compare Means	• 43	
2	Curly	<u>G</u> eneral Linear Model	▶ GLM Univariate	
3	Curly	Generali <u>z</u> ed Linear Models	▶ GLM Multivariate	
4	Curly	Mi <u>x</u> ed Models	GIM <u>R</u> epeated Measures	
5	Curly	<u>C</u> orrelate	▶ <u>Variance Components</u>	
6	Curly	Regression	37	-
7	Curly	L <u>og</u> linear	• 38	
8	Curly	Neural Net <u>w</u> orks	• 46	
9	Curly	Classi <u>f</u> y	28	
10	Curly	Data Reduction	21	
11	Curly	Sc <u>a</u> le	35	
12	Curly	Nonparametric Tests	26	
13	Curly	Time Series	• 43	

Menu akan tampak seperti bagan di bawah ini.

Gambar 9.2 Kotak Dialog Analyze

Apabila menu tersebut sudah dipilih, maka akan tampak kotak dialog. Pindahkan y1 (*brain damage*) dan y2 (*stupidity index*) ke **dependent variabel** dan x (*favourite*) ke **fixed factor(s)**, seperti bagan berikut.

 Dependent Varia	bles: <u>M</u> odel
stupidity_inc	ex Co <u>n</u> trasts
	Plo <u>t</u> s
Eixed Factor(s):	Post <u>H</u> oc
a favorite	Save
	Options
<u>C</u> ovariate(s):	
VVLS Weight:	

Gambar 9.3 Kotak Dialog Multivariate

Selanjutnya dipilih kotak **option** dan dipilih **Homogenity Tests**, selanjutnya pilih **continue** dan **OK**, sehingga muncul hasil analisis.

3. Interpretasi Hasil Analisis

Interpretasi hasil dilakukan mengikuti mekanisme sebagai berikut.

a. Uji Homogenitas Varian

Uji homogenitas varian dilihat dari hasil uji Levene, seperti tampak pada bagan berikut ini.

	F	df1	df2	Sig.
brain_damage	.638	2	72	.531
stupidity_index	1.783	2	72	.175

Levene's Test of Equality of Error Variances^a

Tests the null hypothesis that the error variance of the dependent variable is equal across groups.

a. Design: Intercept + favorite

Gambar 9.4 Hasil Uji Homogenitas Varian

Hasil uji Levene menunjukkan bahwa untuk Brain Damage (Y1) harga F=0,638 dan signifikansi 0,531, sedangkan untuk Stupidity Index (Y2) harga F=1,783 dengan signifikansi 0,175. Signifikansi kedua dependent variable lebih besar dari 0,05. Artinya kedua varian tersebut homogen, sehingga MANOVA dapat dilanjutkan.

b. Uji Homogenitas Matriks Varian/Covarian

MANOVA mensyaratkan bahwa matriks varian/covarian dari variabel dependen sama. Uji homogenitas matriks varian/covarian dilihat dari hasil uji Box. Apabila nilai Box's M signifikan maka hipotesis nol yang menyatakan bahwa matriks varian/covarian dari variabel dependen sama ditolak. Dalam kondisi ini analisis MANOVA tidak dapat dilanjutkan. Hasil uji Box's M dengan SPSS tampak pada bagan berikut ini.

Box's Test of Equality of Covariance Matrices^a

Box's M	6.293
F	1.007
df1	6
df2	1.292E5
Sig.	.419

Tests the null hypothesis that the observed covariance matrices of the dependent variables are equal across groups.

a. Design: Intercept + favorite

Gambar 9.5 Hasil Uji Homogenitas Matriks Varian/Covarian

Harga Box's M =6,293 dengan signifikansi 0,419. Karena signifikansi level melebihi taraf signifikansi penelitian 0,05 sehingga hipotesis null diterima (matriks varian/covarian variable dependent sama). Sehingga analisis MANOVA dapat dilanjutkan.

c. Uji MANOVA

a). Multivariate Test

Setelah kedua uji persyaratan hipotesis dipenuhi dilanjutkan dengan uji hipotesis MANOVA. Uji MANOVA digunakan untuk menguji apakah terdapat perbedaan beberapa variabel terikat antara beberapa kelompok yang berbeda. Dalam contoh ini apakah terdapat perbedaan yang signifikan antara *fans* dari ketiga anggota *Three Stooges* (Curly, Larry, dan Moe) tersebut, apakah *fans* dari anggota *Three Stooges* tersebut berasal dari populasi yang sama. Keputusan diambil dengan analisis Pillae Trace, Wilk Lambda, Hotelling Trace, Roy's Largest Root. Hasil analisis untuk contoh di atas adalah sebagai berikut.

Effect		Value	F	Hypothesis df	Error df	Sig.
Intercept	Pillai's Trace	.909	3.550E2ª	2.000	71.000	.000
	Wilks' Lambda	.091	3.550E2ª	2.000	71.000	.000
	Hotelling's Trace	9.999	3.550E2ª	2.000	71.000	.000
	Roy's Largest Root	9.999	3.550E2ª	2.000	71.000	.000
favorite	Pillai's Trace	.181	3.577	4.000	144.000	.008
	Wilks' Lambda	.821	3.684=	4.000	142.000	.007
	Hotelling's Trace	.216	3.787	4.000	140.000	.006
	Roy's Largest Root	.207	7.454 ^b	2.000	72.000	.001

Multivariate Tests

a. Exact statistic

b. The statistic is an upper bound on F that yields a lower bound on the significance level.

c. Design: Intercept + favorite

Gambar 9.6 Hasil Multivariate Test

Hasil analisis menunjukkan bahwa harga F untuk *pillae trace, wilk lambda, hotelling trace, roy's largest root,* X memiliki signifikansi yang lebih kecil dari 0,05. Artinya, semua harga F signifikan. Jadi, terdapat perbedaan *brain damage* (Y_1) dan *stupidity index* (Y_2) diakibatkan oleh perbedaan pemilihan anggota favorit *Three Stooges*.

b). Test of Between Subject Effects

Test of Between Subject Effects menguji pengaruh *univariate* ANOVA untuk setiap faktor terhadap *dependent variable*. Berikut hasil SPSS:

Source	Dependent Variable	Type III Sum of Squares	df	Mean Square	F	Sig.
Corrected Model	brain_damage	479.227=	2	239.613	2.573	.083
	stupidity_index	1769.040°	2	884.520	7.320	.001
Intercept	brain_damage	62611.853	1	62611.853	672.450	.000
	stupidity_index	61004.280	1	61004.280	504.882	.000
favorite	brain_damage	479.227	2	239.613	2.573	.083
	stupidity_index	1769.040	2	884.520	7.320	.001
Error	brain_damage	6703.920	72	93.110	50	
	stupidity_index	8699.680	72	120.829		
Total	brain_damage	69795.000	75			
	stupidity_index	71473.000	75			
Corrected Total	brain_damage	7183.147	74			
	stupidity index	10468 720	74			

Tests of Between-Subjects Effects

a. R Squared = .067 (Adjusted R Squared = .041) b. R Squared = .169 (Adjusted R Squared = .146)

Gambar 9.6 Hasil Test of Between Subject Effects

Hubungan antara pemilihan anggota favorit *Three Stooges* (X) dengan *brain damage* (Y₁) memberikan harga F sebesar 2,573 dengan signifikansi 0.083. Hal ini menunjukkan bahwa tidak terdapat perbedaan antara *brain damage* yang diakibatkan oleh perbedaan pemilihan anggota favorit *Three Stooges*. Di sisi lain, hubungan antara pemilihan anggota favorit *Three Stooges* (X) dengan *stupidity index* (Y₂) memberikan harga F sebesar 7,320 dengan signifikansi 0.001. Sehingga dapat disimpulkan bahwa terdapat perbedaan antara *stupidity index* yang diakibatkan oleh perbedaan pemilihan anggota favorit *Three Stooges*.

Besarnya nilai Adj R^2 untuk *brain damage* adalah 6,7%. Sedangkan untuk *stupidity index* adalah 16,9%.

c). Post Hoc

Setelah melakukan uji MANOVA lakukan uji Post Hoc untuk menentukan kelompok-kelompok tertentu berbeda satu sama lain dengan langkah sebagai

berikut:

Dependent Variables:	Model
brain_damage	Co <u>n</u> trasts
	Plots
Eixed Factor(s):	Post Hoc
a favorite	Save
	Options
Covariate(s):	
*	/
Post	Hoc
with sweight.	

Gambar 9.7 Kotak Dialog Multivariate

favorite		favorite
Equal Varianc	es Assumed —	
	<u>S-N-K</u>	Waller-Duncan
Bonferroni	l ⊻ <u>T</u> ukey	Type I/Type II Error Ratio: [100
Sidak	🔲 Tu <u>k</u> ey's-b	
Scheffe	Duncan	Control Category: Last 🔻
R-E-G-W-F	Hochberg's GT2	Test
R-E-G-W- <u>Q</u>	<u>G</u> abriel	● 2-sided ○ < Control ○ > Control
Equal Varianc	es Not Assumed—	

Gambar 9.8 Multivariate Post Hoc Multiple Comparisson for Observed Means

Selanjutnya akan muncul hasil analisis.

							95% Confid	ence Interval
		(I) fouori	(J) fouori	Mean Difference (L	#			
Dependent Varia	able	te	te	J) Dillefence	Std. Error	Siq.	Lower Bound	Upper Bound
brain_damage	Tukey HSD	Curly	Larry	6.04	2.729	.076	49	12.57
			Moe	1.84	2.729	.779	-4.69	8.37
		Larry	Curly	-6.04	2.729	.076	-12.57	.49
			Moe	-4.20	2.729	.279	-10.73	2.33
		Moe	Curly	-1.84	2.729	.779	-8.37	4.69
			Larry	4.20	2.729	.279	-2.33	10.73
	Scheffe	Curly	Larry	6.04	2.729	.094	78	12.86
			Moe	1.84	2.729	.797	-4.98	8.66
		Larry	Curly	-6.04	2.729	.094	-12.86	.78
			Moe	-4.20	2.729	.312	-11.02	2.62
		Moe	Curly	-1.84	2.729	.797	-8.66	4.98
			Larry	4.20	2.729	.312	-2.62	11.02
	LSD	Curly	Larry	6.04	2.729	.030	.60	11.48
			Moe	1.84	2.729	.502	-3.60	7.28
		Larry	Curly	-6.04	2.729	.030	-11.48	60
			Moe	-4.20	2.729	.128	-9.64	1.24
		Moe	Curly	-1.84	2.729	.502	-7.28	3.60
			Larry	4.20	2.729	.120	-1.24	9.64
stupidity_index	Tukey HSD	Curly	Larry	11.88'	3.109	.001	4.44	19.32
			Moe	6.48	3.109	.100	96	13.92
		Larry	Curly	-11.88	3.109	.001	-19.32	-4.44
			Moe	-5.40	3.109	.199	-12.84	2.04
		Moe	Curly	-6.48	3.109	.100	-13.92	.96
			Larry	5.40	3.109	199	-2.04	12.84
	Scheffe	Curly	Larry	11.88	3.109	.001	4.11	19.65
			Moe	6.48	3.109	101	-1.29	14.25
		Larry	Curly	-11.88	3.109	.001	-19.65	-4.11
			Moe	-5.40	3.109	.228	-13.17	2.37
		Moe	Curly	-6.48	3.109	.121	-14.25	1.29
			Larry	5.40	3,109	228	-2.37	13.17
	LSD	Curly	Larry	11.88'	3.109	.000	5.68	18.08
			Moe	6.48	3.109	0.44	.28	12.68
		Larry	Curly	-11,88	3,109	.000	-18.08	-5.68
			Moe	-5,40	3,109	.087	-11.60	,80
		Moe	Curly	-6.48	3.109	.041	-12.68	28
			Larry	5.40	3,109	.087	80	11.60

Multiple Comparisons

Based on observed means. The error term is Mean Square(Error) = 120.829.

*. The mean difference is significant at the .05 level.

Gambar 9.9 Hasil Multivariate Post Hoc Multiple Comparisson for Observed Means

Hasil uji Turkey, Scheffe, dan LSD menunjukkan bahwa terdapat perbedaan *stupidity index* antara kategori Curly dan Larry yang ditunjukkan dengan signifikansi level kurang dari 0,05. Di sisi lain, tidak ada perbedaan *brain damage* antara semua kategori.

Tugas Kelas

Jurusan teknik industri memiliki mesin yang ada dalam ruang praktikum yaitu bubut, bor, CNC, 3D printing, anthropometer set, body compositor monitor, kursi antropometri dan WGBT measurement. Mesin-mesin tersebut diuji berdasarkan tingkat kepentingan, kebutuhan dan kegunaan. Oleh karena itu akan dilakukan pengambilan kuesioner terhadap 150 mahasiswa teknik industri untuk memenuhi kebutuhan pengujian yaitu:

- 1) Sample Size \rightarrow Kecakupan Data
- 2) Missing Data
- 3) Outlier \rightarrow Box Plot
- 4) Test Asumsi
- 5) Uji Independensi Observasi
- 6) Kesetaraan antara varian dan covarian matriks:
 - a. Uji Homogenitas varian \rightarrow leven's
 - b. Uji Homogenitasmatriks varian / covarian
 - c. Normality (explore / one sample kolmogonov smirnov)
 - d. Korelasi dan linearity dari dependent variabel dan KMO batlet test.

Nilai	Materi	NIM	
	Tanggal	Nama	
	Dosen	Kelas	

BAB X REGRESI LINIER

A. Latar Belakang

Masalah tingkat penyakit pada suatu desa banyak yang diteliti apakah faktorfaktor ini mempengaruhi tingkat angka penyakit di desa tersebut. Faktor yang diteliti diantaranya adalah rata-rata lingkungan fisik (X1), lingkungan biologis (X2), lingkungan sosial (X3), lingkunan ekonomi (X4), perilaku (X5), keturunan (X6) pekerjaan (X7). Dari semua tes yang diberikan akan dianalisis hubungan antara variabel independen dan variabel dependen dalam kasus tersebut dengan menggunakan analisis regresi linier berganda.

U.	D		ji Regies
	No	X1	Y
	1	20	50.23
	2	20	50.50
	3	25	50.91
	4	26	50.10
	5	21	50.78
	6	30	50.45
	7	29	50.12
	8	25	50.40
	9	25	50.42
	10	24	50.67
	11	22	50.99
	12	20	50.29
	13	22	50.15
	14	27	50.60
	15	26	50.30
	16	30	50.33
	17	25	50.25
	18	22	50.55
	19	22	50.35
	20	21	50.41
	21	29	50.37
	22	26	50.65
	23	29	50.83
	24	24	50.64
	25	22	50.35
	26	25	50.42

No	X1	Y
27	25	50.52
28	26	50.75
29	21	50.35
30	21	50.57
31	29	30.34
32	29	50.22
33	27	50.65
34	24	50.43
35	28	50.85
36	23	50.46
37	23	50.57
38	20	50.52
39	20	50.47
40	24	50.53
41	28	50.55
42	21	50.62
43	30	50.41
44	30	50.48
45	28	50.58
46	29	50.63
47	27	50.18
48	30	50.52
49	30	20.40
50	26	50.67
51	23	50.42
52	23	50.85
53	22	50.7
54	28	50.71
55	28	50.74
56	27	50.42
57	21	50.64
58	27	50.72
59	27	50.46
60	25	50.45

Langkah-langkah dalam melakukan analisis regresi adalah sebagai berikut:

- 1. Input data diatas kedalam SPSS
- 2. Klik Analyze \rightarrow Regression \rightarrow Linier

Gambar 10.1 Kotak Dialog Linear Regression

- 3. Masukan variabel **nilai X1** pada kotak **dependent** dan masukan variabel **Y** pada kotak **independent** (s).
- 4. Klik option, maka muncul kotak dialog linier regression: option.

lise n	robabilit	v of F		
Entry:	.05	Removal:	.10	
) Use F	value	-		
Entry:	3.84	Removal:	2.71	
] [nclude lissing	consta Value:	⊐ nt in equation s	<u>רבייבן</u> ז	

Gambar 10.2 Kotak Dialog Linear regression: options

- 5. Gunakan default dari kotak option dan klik **continue.** Maka kembali ke kotak dialog linier regression.
- 6. Klik statistik, maka muncul kotak dialog linier regression: statistik.

Regression Coefficient Estimates Confidence intervals Covariance matrix	<u>Model fit</u> R <u>squared change</u> <u>Descriptives</u> Part and nartial correlations
	Collinearity diagnostics

Gambar 10.3 Linear regression statistic

- Pada kotak dialog linier regression: statistic, neritanda centang pada kolom estimates untuk mengeluarkan koefesien regressi. Selain itu beritanda centang pada kotak modelfit dan descriptives. Pada kotak residuals beritanda centang pada Durbin-Watson, Casewise diagnostics kemudian pilih All cases.
- 8. Klik Continue.
- 9. Klik Plots, maka akan muncul kotak dialog linier regression: plots

DEPENDINT *ZPRED *ZRESID *DRESID *DRESID *SDRESID *SDRESID Standardized Resid Histogram Histogram Nogmal probability	Scatter 1 of 2 Previous Y: *SDRESID X: *ZPRED ual Plots Produce all partial plots	DEPENDNT *ZPRED *ZRESID *DRESID *ADJPRED *SRESID *SDRESID Standardized Resid Histogram V Nognal probability	Scatter 2 of 2 Previous Next Y: Previous Y: Previous Y: Previous Y: Previous Previou	al plots
--	---	--	--	----------

Gambar 10.4 Kotak dialog linear regression: plot

- untuk membuat plot antara SDRESID dan ZPRED maka masukan peubah SDRESID ke dalam ruang Y dan ZPRED ke dala ruang X. Kemudian klik Next
- 11. Untuk membuat plot antara ZPRED dengan DEPENDT maka masukan peubah standardized residual plots pilih normal probability plot.
- 12. Klik continue
- 13. Klik OK

- Analisis Variabel Entered Removed Menunjukkan metode regresi linier yang dipilih, yaitu enter → Memasukkan semua variabel independen sekaligus untuk dianalisis
- 2. Analisis Model Summary Menunjukkan Nilai Koefisien Korelasi (R) yang menunjukkan tingkat hubungan antar variabel
- Analisis Tabel Anova Memaparkan uji kelinearan (analisis sama dengan analisis ANOVA)
- 4. Tabel Coefficient
 Memaparkan nilai konstanta a dan b dari persamaan linear y
 = a + bx

Tugas Kelas

Lakukan pengujian ulang terhadap tabel 10.1 apabila dilakukan pada 100 responden dengan renang nilai X1 20-30 dan Y 50-51 dan analisis

Nilai	Materi	NIM	
	Tanggal	Nama	
	Dosen	Kelas	

•••••••••••••••••••••••••••••••••••••••

Regresi Linier Beberapa Variabel Independent

Analisis regresi linear berganda adalah pengembangan dari analisa regresi linear sederhana dimana terdapat lebih dari satu variabel independent x. Analisa ini digunakan untuk melihat sejumlah variabel independen $x_1, x_2, ..., x_k$ terhadap variabel dependent y berdasarkan nilai variabel-variabel independent $x_1, x_2, ..., x_k$.

Suatu perusahaan melakukan penilaian terhadap tingkat kepuasan kenyamanan, kelembaban, pencahayaan, kebisingan, kesejukan, kerapian, dan kebersihan suatu ruangan pada 60 karyawan kemudian dilanjutkan analisis dan didapat hasil sebagai berikut:

NO	X1	X2	X3	X4	X5	X6	X7	Y
1	20	30	25	25	22	29	21	50.23
2	20	22	30	22	20	25	21	50.50
3	25	28	28	30	20	25	21	50.91
4	26	23	25	25	29	30	24	50.10
5	21	21	22	25	26	22	24	50.78
6	30	25	29	26	25	21	29	50.45
7	29	27	20	23	23	25	25	50.12
8	25	23	30	21	28	27	30	50.40
9	25	29	30	29	28	29	29	50.42
10	24	29	22	27	25	29	29	50.67
11	22	21	25	26	21	26	25	50.99
12	20	30	27	24	30	23	27	50.29
13	22	30	25	30	26	22	22	50.15
14	27	25	25	20	23	30	22	50.60
15	26	25	25	20	22	21	20	50.30
16	22	27	22	29	30	29	29	50.33
17	26	31	20	26	28	26	25	50.25
18	24	20	20	23	28	23	25	50.55
19	22	25	29	22	24	22	30	50.35
20	20	29	26	30	25	30	22	50.41
21	25	24	25	30	29	30	21	50.37
22	27	23	23	28	26	30	25	50.65
23	24	22	28	28	23	28	27	50.83
24	25	28	28	24	22	25	29	50.64
25	25	20	25	25	30	23	29	50.35
26	26	21	21	29	26	30	20	50.42

Tabel 10.2a Data Uji Regresi Linier Beberapa Variabel Independent

NO	X1	X2	X3	X4	X5	X6	X7	Y	
27	21	26	30	26	29	28	29	50.52	
28	23	29	26	23	27	28	26	50.75	
29	29	24	23	22	27	24	25	50.35	
30	28	23	22	30	28	25	23	50.57	
31	24	23	25	30	21	25	28	30.34	
32	29	30	25	28	21	25	28	50.22	
33	24	25	25	28	21	25	25	50.65	
34	30	22	25	24	20	22	21	50.43	
35	30	20	25	25	27	26	30	50.85	
36	28	20	22	22	25	24	26	50.46	
37	28	29	26	20	25	30	23	50.57	
38	24	26	30	20	22	30	22	50.52	
39	25	25	28	29	26	28	20	50.47	
40	25	23	28	26	30	28	22	50.53	
41	22	28	24	25	28	24	25	50.55	
42	26	28	25	23	28	25	25	50.62	
43	25	25	22	28	24	25	22	50.41	
44	24	21	24	28	25	22	26	50.48	
45	29	30	30	25	22	26	23	50.58	
46	21	26	30	21	25	25	25	50.63	
47	23	23	28	30	25	24	27	50.18	
48	27	22	28	26	22	29	24	50.52	
49	25	26	24	23	26	21	30	20.40	
50	28	22	25	22	28	23	30	50.67	
51	30	29	25	29	30	27	28	50.42	
52	21	30	22	25	22	25	28	50.85	
53	29	30	26	25	20	28	24	50.57	
54	28	27	25	30	20	30	25	50.71	
55	26	29	24	22	29	28	25	50.74	
56	28	25	29	21	26	28	22	50.42	
57	26	22	21	25	25	24	26	50.64	
58	21	20	23	27	23	25	25	50.72	
59	20	20	27	29	28	25	24	50.46	
60	26	29	25	29	28	22	29	50.45	

Langkah-langkah melakukan analisis regresi linear beberapa variabel independent pada dasarnya sama seperti regresi linear satu variabel.

- 1. Input data di atas ke dalam SPSS.
- 2. Klik Analyze \rightarrow Regression \rightarrow Linier

Selection Variable: Case Labels: WLS Weight: OK Paste Reset Cancel Help	Image: Constraint of the second se
--	---

Gambar 10.5 kotak dialog linear regression

- 3. Klik **statistics**, langkahnya sama dengan regresi sederhana atau regresi satu variabel
- 4. Klik **options**, langkahnya sama dengan regresi sederhana atau regresi satu variabel
- 5. Klik OK

 $y = a + b_1 x_1 + b_2 x_2 + b_3 x_3 + \dots + b_n x_n$

 $y = variabel dependen x_1, x_2 =$

variabel independen

 $a = konstanta, perpotongan garis pada sumbu x_1 b_1,$

b₂, b_n= koefisien regresi

Tugas Kelas

Lakukan pengujian ulang apabila ditambah 40 karyawan kemudian lakukan analisis kembali!

Tugas Praktikum (mingguan):

- A. Buatlah persamaan regresi dari suatu kasus dengan banyak variabel.
- B. Langkah-langkah yang harus dilakukan adalah sebagai berikut:

- a. Latar belakang masalah
- b. *Normality test*
- c. Uji Multikolinearitas
- d. Homoscedasticity test
- e. Uji Autokorelasi
- f. Uji F
- g. Goodness of Fit test
- h. Penarikan kesimpulan

Nilai	Materi	NIM	
	Tanggal	Nama	
	Dosen	Kelas	

BAB XI ANALISIS FAKTOR

Dengan analisis faktor, kita akan memperoleh hasil sebagai berikut:

- 1. Identifikasi dimensi-dimensi atau faktor-faktor mendasar yang dapat menjelaskan korelasi dari serangkaian variabel.
- 2. Identifikasi variabel-variabel baru yang lebih kecil untuk menggantikan variabel yang tidak berkorelasi dari serangkaian variabel asli (asal) yang berkorelasi dari analisa multivariate (analisis regresi atauanalisis diskriminan).
- 3. Identifikasi variabel-variabel kecil yang menonjol (dari variabel yang lebih besar) dari suatu analisis multivariate.

Pada analisis faktor, asumsi yang harus terpenuhi adalah sebagai berikut:

- 1. Korelasi antar variabel Independen. Besar korelasi atau korelasi antar independen variabel harus cukup kuat, misalnya di atas 0,5.
- Korelasi Parsial. Besar korelasi parsial, korelasi antar dua variabel dengan menganggap tetap variabel yang lain, justru harus kecil.
 Pada SPSS deteksi terhadap korelasi parsial diberikan lewat pilihan AntiImage Correlation.
- 3. Pengujian seluruh matriks korelasi (korelasi antar variabel), yang diukur dengan besaran **Bartlett Test of Sphericity** atau **Measure Sampling Adequacy** (**MSA**). Pengujian ini mengharuskan adanya korelasi yang signifikan di antara paling sedikit beberapa variabel.
- 4. Pada beberapa kasus, **asumsi Normalitas** dari variabel-variabel atau faktor yang terjadi sebaiknya dipenuhi.

Seorang dokter melakukan pengujian pada 50 pasien terhadap *leng, muscle, liver, skeleton, kidneys, heart, step, stamina, stretch, blow,* dan *urine* untuk mengetahui kondisi setelah dilakukan operasi kemudian didapat hasil sebagai berikut:

Pasien	Lung	Muscle	Liver	Sceleton	Kidneys	Heart	Step	Stamina	Strech	Blow	Urine
1	1.03	.23	.53	.38	.47	.55	.40	1.60	.69	.53	.47
2	1.04	.26	.53	.47	.43	.55	.45	1.58	.45	.54	.45
3	1.02	.26	.54	.41	.43	.55	.42	1.62	.55	.46	.42
4	1.03	.22	.46	.38	.38	.52	.45	1.60	.53	.53	.45
5	1.04	.22	.53	.38	.39	.52	.42	1.60	.55	.45	.42
6	1.03	.22	.45	.42	.47	.56	.38	1.55	52.00	.42	.38
7	1.04	.22	.42	.40	.43	.56	.47	1.55	47.00	.52	.47
8	1.04	.24	.52	.41	.43	.52	.41	1.59	65.00	.51	.41
9	1.02	.22	.51	.44	.38	.52	.38	1.68	46.00	.53	.38
10	1.01	.24	.53	.45	.39	.55	.38	1.70	51.00	.57	.38
11	1.03	.24	.57	.40	.45	.53	.42	1.65	67.00	.47	.42
12	1.01	.23	.47	.44	.40	.55	.40	1.60	45.00	.45	.40
13	1.01	.26	.45	.40	.38	.55	.47	1.60	67.00	.55	.41
14	1.03	.26	.45	.45	.40	.55	.41	1.60	59.00	.54	.44

Tabel 11.1 Data Hasil Operasi

Pasien	Lung	Muscle	Liver	Sceleton	Kidneys	Heart	Step	Stamina	Strech	Blow	Urine
15	1.04	.24	.53	.38	.42	.52	.38	1.58	49.00	.41	.45
16	1.02	.22	.53	.47	.41	.56	.38	1.62	61.00	.57	.40
17	1.02	.22	.54	.45	.40	.56	.42	1.60	56.00	.53	.44
18	1.01	.22	.46	.42	.47	.52	.40	1.60	49.00	.45	.40
19	1.03	.24	.53	.45	.46	.52	.41	1.55	54.00	.52	.45
20	1.03	.22	.45	.42	.44	.55	.44	1.55	61.00	.53	.38
21	1.02	.24	.42	.38	.45	.53	.45	1.59	60.00	.46	.47
22	1.02	.24	.52	.47	.40	.55	.40	1.68	55.00	.57	.45
23	1.02	.26	.51	.41	.38	.52	.44	1.70	56.00	.53	.42
24	1.01	.24	.53	.38	.40	.56	.40	1.65	66.00	.46	.45
25	1.02	.22	.57	.38	.42	.56	.45	1.60	70.00	.53	.42
26	1.01	.22	.47	.42	.41	.52	.38	1.60	65.00	.45	.38
27	1.04	.22	.45	.40	.40	.52	.47	1.59	50.00	.42	.47
28	1.03	.24	.55	.41	.47	.55	.45	1.68	49.00	.52	.41
29	1.03	.22	.54	.44	.46	.53	.42	1.70	46.00	.51	.38
30	1.02	.24	.41	.45	.44	.55	.45	1.65	63.00	.53	.38
31	1.03	.24	.57	.40	.47	.55	.42	1.60	45.00	.57	.42
32	1.03	.23	.53	.44	.43	.55	.38	1.60	70.00	.47	.40
33	1.03	.26	.45	.40	.43	.52	.47	1.60	45.00	.45	.41
34	1.03	.26	.52	.45	.38	.56	.38	1.58	62.00	.45	.44
35	1.04	.24	.53	.38	.39	.56	.38	1.62	65.00	.45	.45
36	1.03	.22	.46	.47	.45	.52	.42	1.60	53.00	.53	.38
37	1.03	.22	.57	.45	.40	.52	.40	1.60	49.00	.53	.47
38	1.01	.22	.53	.42	.38	.55	.41	1.55	50.00	.54	.41
39	1.01	.24	.46	.45	.40	.53	.44	1.55	49.00	.46	.38
40	1.03	.23	.53	.42	.42	.55	.45	1.59	67.00	.53	.38
41	1.04	.25	.45	.38	.41	.52	.40	1.68	63.00	.45	.42
42	1.01	.25	.42	.47	.40	.56	.44	1.70	60.00	.42	.40
43	1.04	.25	.52	.41	.47	.56	.40	1.56	61.00	.52	.41
44	1.03	.23	.51	.38	.46	.52	.45	1.67	67.00	.51	.44
45	1.04	.22	.53	.38	.44	.52	.38	1.65	70.00	.53	.45
46	1.02	.24	.57	.42	.45	.55	.47	1.53	66.00	.57	.40
47	1.04	.22	.47	.40	.40	.52	.45	1.54	49.00	.47	.44
48	1.02	.24	.45	.41	.40	.56	.42	1.63	61.00	.45	.40
49	1.03	.24	.45	.44	.42	.56	.45	1.57	51.00	.45	.45
50	1.02	.23	.45	.45	.41	.52	.42	1.60	46.00	.53	.38

Sebagai contoh, kita akan melakukan analisis faktor pada 11 variabel. Langkahnya adalah sebagai berikut:

1. Pada menu SPSS, klik Analyze, Data Reduction, Factor. Masukkan semua variabel ke dalam kotak "Variables".

 Tekan tombol "Descriptives" kemudian centang "Univariate descriptives", "Initial Solutions", "Coefficients", "Significance Levels", "Determinant", "KMO and Bartlett's test of sphericity" dan "Anti Image". Klik "Continue".

Statistics —		
🕑 Univariate d	lescriptives	
🗹 Initial solutio	n	
Correlation Ma	atrix	
Coefficient:	s 🗌 Inv	/erse
Significance	e levels 📃 <u>R</u> e	produced
🔽 Determinan	t 💽 Ar	nti-image
KMO and B	artlett's test of	sphericity
1		[

Gambar 11.2 Kotak Dialog Deskriptive Analisis Faktor

3. Tekan tombol "Extractions" kemudian pilih "Principal components" sebagai method, pada "Analyze" pilih "Correlation matrix", pada "display" pilih "Unrotated factor solution" dan "Scree plot". Pada extract, pilih Eigenvalue over dan isi dengan angka "1". Klik "Continue".

enioa. Innicipal componenta	<u> </u>
Inalyze	Display
 Correlation matrix 	Unrotated factor solution
◯ Co <u>v</u> ariance matrix	Scree plot
xtract	
Eigenvalues over: 1	
○ <u>N</u> umber of factors:	1

Gambar 11.3 Kotak Dialog Extraction

4. Tekan tombol "Rotation" kemudian centang "Varimax" dan pada display centang semua, yaitu "Rotated solutions" dan "Loading plot(s)". Klik "Continue".

None Quartimax Varimax Equamax Direct Oblimin Promax Detta: Mappa	ia -	
Marimax C Equamax O Direct Oblimin C Promax Delta: 0 Kappa 4	one C) <u>Q</u> uartimax
O Direct Oblimin O Promax Delta: 0 Kappa 4	arimax C) <u>E</u> quamax
	rect <u>O</u> blimin C) <mark>Promax</mark> Kappa 4
Display	l y stated solution	Loading plot(s)

Gambar 11.4 Kotak Dialog Rotation

5. Tekan tombol "Options" kemudian centang "Sorted by Size".

Analisis Faktor Options

 Exclude cases listwise Exclude cases pairwise Replace with mean oefficient Display Format Sorted by size 		
Exclude cases gairwise Replace with mean oefficient Display Format Sorted by size	Exclude case	s listwise
○ Replace with mean oefficient Display Format ✓ Sorted by size	O Exclude case	s <u>p</u> airwise
oefficient Display Format ✓ Sorted by size	◯ <u>R</u> eplace with	mean
	Coefficient Disp	lay Format

Gambar 11.5 Kotak Dialog Options

langkah ini bukan langkah terakhir dalam analisis faktor, karena analisis Anda dapat dilakukan secara berulang hingga syarat minimal nilai **KMO, Bartlett's Sphericity, MSA** dan **Communalities** terpenuhi.

		lung	muscle	liver	sceleton	kidneys	heart	step	stamina	stretch	blow	urine
Correlation	lung	1.000	.107	.580	.275	.294	.211	.299	.129	.293	.178	.027
	muscle	.107	1.000	.220	.393	.031	.209	.118	.121	.113	.013	091
	liver	.580	.220	1.000	.218	.443	.324	.393	.200	.303	.248	017
	sceleton	.275	.393	.218	1.000	.175	.284	.256	.296	.459	.156	.023
	kidneys	.294	.031	.443	.175	1.000	.382	.366	.118	.239	.322	.129
	heart	.211	.209	.324	.284	.382	1.000	.250	.079	024	.197	042
	step	.299	.118	.393	.256	.366	.250	1.000	.283	.388	.299	.216
	stamina	.129	.121	.200	.296	.118	.079	.283	1.000	.259	.355	.214
	stretch	.293	.113	.303	.459	.239	024	.388	.259	1.000	.461	.144
	blow	.178	.013	.248	.156	.322	.197	.299	.355	.461	1.000	.280
	urine	.027	091	017	.023	.129	042	.216	.214	.144	.280	1.000
Sig. (1-tailed)	lung		.116	.000	.001	.000	.008	.000	.074	.000	.022	.380
	muscle	.116		.006	.000	.365	.009	.092	.086	.102	.443	.155
	liver	.000	.006		.007	.000	.000	.000	.012	.000	.002	.423
	sceleton	.001	.000	.007		.024	.001	.002	.000	.000	.039	.400
	kidneys	.000	.365	.000	.024		.000	.000	.093	.003	.000	.073
	heart	.008	.009	.000	.001	.000		.002	.189	.395	.013	.321
	step	.000	.092	.000	.002	.000	.002		.001	.000	.000	.007
	stamina	.074	.086	.012	.000	.093	.189	.001		.002	.000	.008
	stretch	.000	.102	.000	.000	.003	.395	.000	.002		.000	.053
	blow	.022	.443	.002	.039	.000	.013	.000	.000	.000		.001
	urine	.380	.155	.423	.400	.073	.321	.007	.008	.053	.001	

Output SPSS Anda ditunjukkan pada gambar berikut:

a. Determinant = .067

Tabel Matrix Korelasi

Matrik korelasi dikatakan antar variabel saling terkait apabila determinan bernilai mendekati nilai 0. Hasil perhitungan menunjukkan nilai *Determinant of Correlation Matrix* sebesar 0,67. Nilai ini mendekatai 0, dengan demikian matriks korelasi antara variabel saling terkait.

KMO and Bartlett's Test

Kaiser-Meyer-Olkin Me	asure of Sampling Adequacy.	.687
Bartlett's Test of	Approx. Chi-Square	330.640
Sphericity	df	55
	Sig.	.000

KMO dan Bartlett Test of Sphericity

Kaiser Meyer Olkin Measure of Sampling (KMO) adalah indeks perbandingan jarak antara koefisien korelasi dengan koefisien korelasi parsialnya. Jika jumlah kuadrat koefisen korelasi parsial di antara seluruh pasangan variabel bernilai kecil jika dibandingkan dengan jumlah kuadrat koefisien korelasi, maka akan menghasilkan nilai KMO mendekati 1. Nilai KMO dianggap mencukupi jika lebih dari 0,5. Hasil penelitian menunjukkan bahwa nilai Kaiser Meyer Olkin Measure of Sampling sebesar 0,687. Maka *persyaratan KMO sudah memenuhi karena memiliki nilai di atas 0,5*.

Hasil nilai Barlett Test of Spehricity sebesar 207,690 dengan signifikansi sebesar 0,000. Dengan demikian Bartlett Test of Spehricity memenuhi persyaratan karena signifikansi di bawah 0,05 (5%).

Measures of Sampling Adequacy (MSA) Pengujian persyaratan MSA terhadap 9 variabel, dijelaskan pada tabel berikut:

					Anti-image	Matrices						
		lung	muscle	liver	sceleton	kidneys	heart	step	stamina	stretch	blow	urine
Anti-image Covariance	lung	.627	.064	272	092	005	003	027	.035	032	.008	017
	muscle	.064	.788	118	222	.080	055	016	010	.035	.018	.054
	liver	272	118	.508	.079	146	078	083	068	059	002	.084
	sceleton	092	222	.079	.561	010	180	.012	151	240	.106	.006
	kidneys	005	.080	146	010	.666	166	094	.054	025	085	063
	heart	003	055	078	180	166	.661	095	.061	.210	141	.076
	step	027	016	083	.012	094	095	.676	100	133	.017	127
	stamina	.035	010	068	151	.054	.061	100	.766	.042	182	099
	stretch	032	.035	059	240	025	.210	133	.042	.511	231	.019
	blow	.008	.018	002	.106	085	141	.017	182	231	.617	139
	urine	017	.054	.084	.006	063	.076	127	099	.019	139	.847
Anti-image Correlation	lung	.741*	.090	482	155	007	004	042	.051	056	.012	024
	muscle	.090	.630ª	187	333	.110	076	022	013	.056	.025	.066
	liver	482	187	.715=	.148	250	134	142	108	117	003	.128
	sceleton	155	333	.148	.593*	016	296	.020	230	449	.181	.008
	kidneys	007	.110	250	016	.805ª	250	140	.076	043	133	084
	heart	004	076	134	296	250	.574=	141	.086	.362	220	.102
	step	042	022	142	.020	140	141	.846ª	139	226	.026	168
	stamina	.051	013	108	230	.076	.086	139	.724ª	.067	265	123
	stretch	056	.056	117	449	043	.362	226	.067	.611ª	411	.029
	blow	.012	.025	003	.181	133	220	.026	265	411	.670ª	193
	urine	- 024	066	128	008	- 084	102	- 168	- 123	029	- 193	647=

a. Measures of Sampling Adequacy(MSA)

Tabel Anti Image Matrix

Nilai MSA pada tabel di atas ditunjukkan pada baris **Anti Image Correlation** dengan tanda "**a**". Misal X1 nilai MSA = 0,741 dimana > 0,5 maka X1 memenuhi syarat MSA, sedangkan MSA X2 = 0,110< 0,5 maka X2 tidak memenuhi syarat MSA. Dari 9 variabel, hanya X2 dengan MSA < 0,5, maka X2 dikeluarkan dari pengujian. Sehingga anda harus mengulangi langkah analisis faktor seperti pada artikel sebelumnya, yaitu: analisis faktor dengan SPSS tanpa mengikutsertakan X2.

Silahkan ulangi lagi, dan kembali lihat nilai **Determinant, KMO, Barlett Test of Spehricity** dan **MSA.**

Setelah anda ulangi tanpa X2, maka lihat nilai **Determinant:** 0,67. **KMO**, yaitu: 0,687. **Barlett Test of Spehricity:** 330,649 dengan sig: 0,000. Maka syarat **KMO** dan **Barlett Test of Spehricity** terpenuhi. Selanjutnya kembali lihat nilai MSA:

N.									-			3
		lung	muscle	liver	sceleton	kidneys	heart	step	stamina	stretch	blow	urine
Anti-image Covariance	lung	.627	.064	272	092	005	003	027	.035	032	.008	017
	muscle	.064	.788	118	222	.080	055	016	010	.035	.018	.054
	liver	272	118	.508	.079	146	078	083	068	059	002	.084
	sceleton	092	222	.079	.561	010	180	.012	151	240	.106	.006
	kidneys	005	.080	146	010	.666	166	094	.054	025	085	063
	heart	003	055	078	180	166	.661	095	.061	.210	141	.076
	step	027	016	083	.012	094	095	.676	100	133	.017	127
	stamina	.035	010	068	151	.054	.061	100	.766	.042	182	099
	stretch	032	.035	059	240	025	.210	133	.042	.511	231	.019
	blow	.008	.018	002	.106	085	141	.017	182	231	.617	139
	urine	017	.054	.084	.006	063	.076	127	099	.019	139	.847
Anti-image Correlation	lung	.741*	.090	482	155	007	004	042	.051	056	.012	024
	muscle	.090	.630ª	187	333	.110	076	022	013	.056	.025	.066
	liver	482	187	.715=	.148	250	134	142	108	117	003	.128
	sceleton	155	333	.148	.593"	016	296	.020	230	449	.181	.008
	kidneys	007	.110	250	016	.805ª	250	140	.076	043	133	084
	heart	004	076	134	296	250	.574=	141	.086	.362	220	.102
	step	042	022	142	.020	140	141	.846ª	139	226	.026	168
	stamina	.051	013	108	230	.076	.086	139	.724*	.067	265	123
	stretch	056	.056	117	449	043	.362	226	.067	.611ª	411	.029
	blow	.012	.025	003	.181	133	220	.026	265	411	.670ª	193
	urine	024	.066	.128	.008	084	.102	168	123	.029	193	.647ª

a. Measures of Sampling Adequacy(MSA)

Tabel MSA

Berdasarkan tabel di atas, masih ada variabel dengan MSA < 0,5 yaitu X3. Maka ulangi lagi proses analisis tanpa mengikutsertakan X3.

		lung	liver	sceleton	kidneys	heart	step	stamina	stretch	blow	urine
Correlation	lung	1.000	.580	.275	.294	.211	.299	.129	.293	.178	.027
	liver	.580	1.000	.218	.443	.324	.393	.200	.303	.248	017
	sceleton	.275	.218	1.000	.175	.284	.256	.296	.459	.156	.023
	kidneys	.294	.443	.175	1.000	.382	.366	.118	.239	.322	.129
	heart	.211	.324	.284	.382	1.000	.250	.079	024	.197	042
	step	.299	.393	.256	.366	.250	1.000	.283	.388	.299	.216
	stamina	.129	.200	.296	.118	.079	.283	1.000	.259	.355	.214
	stretch	.293	.303	.459	.239	024	.388	.259	1.000	.461	.144
	blow	.178	.248	.156	.322	.197	.299	.355	.461	1.000	.280
	urine	.027	017	.023	.129	042	.216	.214	.144	.280	1.000
Sig. (1-tailed)	lung		.000	.001	.000	.008	.000	.074	.000	.022	.380
	liver	.000		.007	.000	.000	.000	.012	.000	.002	.423
	sceleton	.001	.007		.024	.001	.002	.000	.000	.039	.400
	kidneys	.000	.000	.024		.000	.000	.093	.003	.000	.073
	heart	.008	.000	.001	.000		.002	.189	.395	.013	.321
	step	.000	.000	.002	.000	.002		.001	.000	.000	.007
	stamina	.074	.012	.000	.093	.189	.001		.002	.000	.008
	stretch	.000	.000	.000	.003	.395	.000	.002		.000	.053
	blow	.022	.002	.039	.000	.013	.000	.000	.000		.001
	urine	.380	.423	.400	.073	.321	.007	.008	.053	.001	

Kemudian cek ulang, dan hasilnya sebagai berikut:

a. Determinant = .085

Tabel Determinant

Setelah diulangi tanpa X3, maka nilai Determinant: 0,085.

KMO and Bartlett's Test

Kaiser-Meyer-Olkin Me	asure of Sampling Adequacy.	.688
Bartlett's Test of	Approx. Chi-Square	302.334
Sphericity	df	45
	Sig.	.000

KMO Step 2

Setelah diulangi tanpa X3, maka nilai **KMO:** 0,688. **Barlett Test of Spehricity:** 302,334 dengan sig: 0,000. Maka syarat **KMO** dan **Barlett Test of Spehricity** terpenuhi. Selanjutnya kembali lihat nilai MSA:

Ante-maye Mattles											
		lung	liver	sceleton	kidneys	heart	step	stamina	stretch	blow	urine
Anti-image Covariance	lung	.633	274	084	011	.002	026	.036	035	.006	022
	liver	274	.526	.054	140	090	089	072	056	.001	.096
	sceleton	084	.054	.631	.014	222	.009	173	260	.125	.024
	kidneys	011	140	.014	.675	164	094	.056	029	088	069
	heart	.002	090	222	164	.665	096	.061	.215	140	.081
	step	026	089	.009	094	096	.676	100	133	.017	127
	stamina	.036	072	173	.056	.061	100	.766	.043	182	099
	stretch	035	056	260	029	.215	133	.043	.512	232	.017
	blow	.006	.001	.125	088	140	.017	182	232	.617	141
	urine	022	.096	.024	069	.081	127	099	.017	141	.851
Anti-image Correlation	lung	.752ª	475	133	017	.003	040	.052	062	.010	030
	liver	475	.731*	.093	235	152	149	113	108	.001	.143
	sceleton	133	.093	.577=	.022	342	.013	249	457	.201	.032
	kidneys	017	235	.022	.821ª	244	139	.078	050	137	092
	heart	.003	152	342	244	.534*	144	.086	.368	219	.107
	step	040	149	.013	139	144	.843°	139	225	.027	167
	stamina	.052	113	249	.078	.086	139	.708	.068	265	122
	stretch	062	108	457	050	.368	225	.068	.603 =	413	.026
	blow	.010	.001	.201	137	219	.027	265	413	.665°	195
	urine	- 020	142	022	- 092	107	- 167	- 122	0.26	. 196	6219

a. Measures of Sampling Adequacy(MSA)

MSA Step 2

Dari tabel di atas menunjukkan bahwa 7 variabel diuji memenuhi persyaratan MSA yaitu di atas 0,5 sehingga dapat digunakan untuk pengujian selanjutnya.

	Co	mmunalities
	Initial	Extraction
lung	1.000	.528
liver	1.000	.647
sceleton	1.000	.617
kidneys	1.000	.632
heart	1.000	.527
step	1.000	.480
stamina	1.000	.443
stretch	1.000	.693
blow	1.000	.570
urine	1.000	.652

Komunalitas Step 2

Dari tabel di atas menujukkan 7 variabel diuji memenuhi persyaratan **komunalitas** *yaitu lebih besar dari 0,5 (komunalitas > 0,5)*. Jika ada variabel dengan nilai *Extraction* pada tabel**Communalities < 0,5**, maka variabel tersebut tidak memenuhi

syarat komunalitas dan harus dikeluarkan dari pengujian serta anda harus mengulangi langkah analis faktor dari awal tanpa mengikutsertakan variabel yang tidak memenuhi syarat komunalitas. Pengulangan tersebut sama dengan cara pengulangan pada syarat MSA yang telah dijelaskan di atas.

Untuk interprestasi selanjutnya yaitu pembentukan component faktor, rotasi faktor, scree plot dan faktor skor. Scree plot merupakan suatu plot dari eigenvalue sebagai fungsi banyaknya faktor. Hasilnya menunjukkan bahwa titik pada tempat dimana the scree mulai terjadi, menunjukkan banyaknya faktor yang benar. Semakin tinggi eigenvalue, semakin tinggi pula proporsi varian yang ada pada faktor.

Communalities

	Co	mmunalitie
	Initial	Extraction
lung	1.000	.528
liver	1.000	.647
sceleton	1.000	.617
kidneys	1.000	.632
heart	1.000	.527
step	1.000	.480
stamina	1.000	.443
stretch	1.000	.693
blow	1.000	.570
urine	1.000	.652

Extraction Method: Principal Component Analysis.

Tabel Communalities

Tabel di atas menunjukkan seberapa besar sebuah variabel dapat menjelaskan faktor. Misal X1 nilainya 0,528, artinya variabel X1 dapat menjelaskan faktor sebesar 52,8%. Begitu pula dengan variabel lainnya, di mana semuanya > 50%, oleh karenanya dapat disimpulkan bahwasanya semua variabel dapat menjelaskan faktor.

Faktor Yang Sekiranya Dapat Terbentuk

Tabel **Total Variance Explained** di bawah ini berguna untuk menentukan berapakah faktor yang mungkin dapat dibentuk.

		Initial Eigenval	ues	Extractio	n Sums of Squar	ed Loadings	Rotatio	ed Loadings	
Component	Total % of Variance		Cumulative %	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %
1	3.307	33.067	33.067	3.307	33.067	33.067	2.241	22.408	22.408
2	1.416	14.165	47.232	1.416	14.165	47.232	1.876	18.755	41.164
3	1.066	10.659	57.891	1.066	10.659	57.891	1.673	16.727	57.891
4	.926	9.257	67.147						
5	.756	7.564	74.711						
6	.720	7.203	81.914						
7	.639	6.388	88.302						
8	.529	5.292	93.594						
9	.369	3.688	97.282						
10	.272	2.718	100.000						

Total Variance Explained

Extraction Method: Principal Component Analysis.

Tabel Eigenvalue

Berdasarkan tabel di atas, lihat kolom "Component" yang menunjukkan bahwa ada 7 komponen yang dapat mewakili variabel. Perhatikan kolom "Initial Eigenvalues" yang dengan SPSS kita tentukan nilainya 1 (satu). Varians bisa diterangkan oleh oleh faktor 1 adalah $3.307/7 \ge 100\% = 47,242$. Oleh faktor 2 sebesar $1.416/7 \ge 100\% = 100\%$ 100% = 20,228. Sementara oleh faktor 3 sebesar $1,066/7 \times 100\% = 15,228$. Sehingga total ketiga faktor akan mampu menjelaskan variabel sebesar 47,242% + 20,228% + 15,228% = 82,698%. Dengan demikian, karena nilai Eigenvalues yang ditetapkan 1, maka nilai Total yang akan diambil adalah yang > 1 yaitu component 1, 2 dan 3.

Factor Loading

Setelah kita mengetahui bahwa faktor maksimal yang bisa terbentuk adalah 3 faktor, selanjutnya kita melakukan penentuan masing-masing variabel akan masuk ke dalam faktor mana, apakah faktor 1, 2 atau 3. Cara menentukan tersebut adalah dengan melihat tabel Component Matrix seperti di bawah ini:

	Com	oonent Matri	ix ^a					
	Component							
	1 2 3							
liver	.695	405	.004					
step	.679	.066	.123					
stretch	.645	.335	406					
kidneys	.627	254	.417					
lung	.609	353	182					
blow	.608	.389	.221					
stamina	.486	.442	110					
urine	.257	.603	.472					
heart	.456	486	.287					
sceleton	.551	.019	559					

Extraction Method: Principal Component Analysis

Tabel Component Matrix

Tabel di atas menunjukkan seberapa besar sebuah variabel berkorelasi dengan faktor yang akan dibentuk. Misal: X5 berkorelasi sebesar 0,885 dengan faktor 1, 0,405 dengan faktor 2 dan 0,004 dengan faktor 3.

Secara jelasnya dapat anda lihat pada tabel Rotated Component Matrix di bawah ini untuk menentukan variabel mana akan masuk faktor yang mana.

	0	omponent	
	1	2	3
sceleton	.804	053	.171
stretch	.752	.363	007
lung	.487	023	.429
urine	144	.797	014
blow	.259	.666	.241
stamina	.428	.501	035
heart	.057	093	.823
kidneys	.073	.274	.756
step	.353	.414	.435

Rotated Component Matrix^a

Extraction Method: Principal Component Analysis. Rotation Method: Varimax with Kaiser Normalization

a. Rotation converged in 6 iterations.

Tabel Rotated Component Matrix

Penentuan variabel masuk faktor mana ditentukan dengan melihat nilai korelasi terbesar. Pada tabel di atas telah diurutkan dari nilai yang terbesar ke yang terkecil per faktor. Perhatikan baik-baik di atas:

Skeleton korelasi terbesar dengan faktor 1 yaitu 0,804, begitu pula stretch: 0,752 dan lung: 0,487. Yang paling berkorelasi dengan faktor 2 adalah urine: 0,797, blow: 0,666. Sedangkan heart sebesar 0,823 lebih berkorelasi dengan faktor 3, begitu juga dengan kidneys: 0,756 masuk ke faktor 3. Maka dapat disimpulkan anggota masing masing faktor:

Faktor 1: skeleton, stretch

Faktor 2: urine, blow, stamina

Faktor 3: heart, kidneys

Langkah terakhir untuk penentuan faktor adalah melihat tabel **Component Transformation Matrix**.

Compo nent	1	2	3
1	.651	.539	.534
2	003	.705	709
3	759	.460	.641
Extraction Analysis. Rotation M	Method: Prin ⁄lethod: <u>Varin</u>	cipal Compo nax with Kais	nent er

Tabel Transformation Matrix

Tabel di atas menunjukkan bahwa pada component 1 nilai korelasi 0,651> 0,5, component 2: 0,705> 0,5 dan component 3: 0,641> 0,5. Karena semua component > 0,5 maka ketiga faktor yang terbentuk dapat dikatakan tepat dalam merangkum ketujuh variabel yang ada.

Factor Score

Setelah anda mendapatkan faktor-faktor yang terbentuk, maka langkah selanjutnya untuk keperluan analisis lebih lanjut, anda dapat menentukan faktor skor. Caranya adalah dengan mengulangi langkah analisis faktor tetapi pada saat proses anda tekan tombol "Scores", kemudian centang "Save as variables" dan pilih method "Regression".

P Dave as var	lables	
Method		
() Regr	ession	
⊖ <u>B</u> artl	ett	
	erson-Rubin	
		ant matrix

Gambar 11.6 Kotak Dialog Analisis Faktor

Setelah anda klik "Continue" dan "OK" pada jendela utama, maka lihat pada **dataset** anda di "data view".

	FAC1_1	FAC2_1	FAC3_1
1	-0.93183	0.16258	0.11807
2	-1.01790	-0.01358	-0.27448
3	1.52593	0.21725	-0.77347
4	-0.47861	0.82801	1.16382
5	0.10547	0.26965	0.60442
6	1.39850	0.46242	0.06869
7	-0.39774	-1.46350	-0.56046
8	0.22734	-0.95945	-0.35382
9	0.80684	0.55844	1.04309
10	-1.02818	0.96055	-0.07344
11	-0.76872	-0.65697	0.10318
12	0.59335	-0.10007	0.46052
13	1.63066	-0.69885	-0.66225
14	-0.53281	-0.15429	-0.18276
15	-1.16634	0.88421	-0.78947
16	1.16094	-2.87918	-1.28648
17	-0.32203	0.03461	-1.68531
18	-0.57339	0.21454	0.21143
19	-1.60895	1.65671	0.95260
20	-0.48072	1.15406	1.00239
21	1.09375	-0.04645	0.79393
22	0.95930	-0.03245	0.13407
23	0.37619	1.31694	0.58635
24	1.24477	0.74754	-0.44691
25	-1.37307	1,41347	0.45551

Gambar 6.12 Factor Scor

Lihat bahwa muncul variabel baru, yaitu FAC1 1 yang merupakan faktor skor dari faktor 1, FAC2_1 yang merupakan faktor skor dari faktor 2 dan FAC3_1 yang merupakan faktor skor dari faktor 3.

Tugas Kelas:

Data berasal dari [Kendall M. (1975). Multivariate analysis. Griffin, London] data berkorespondensi dengan 48 pelamar untuk posisi di perusahaan yang telah dinilai berdasarkan 15 variabel berikut: *Form of letter of application, Appearance, Academic ability, Likeability, Self-confidence, Lucidity, Honesty, Salesmanship, Experience Drive, Ambition Grasp, Potential Keenness to join, Suitability.* Lakukan uji analisis factor untuk untuk menentukan faktor-faktor mendasar yang ada.

D. Langkah-langkah yang harus dilakukan adalah sebagai berikut:

- a. Examining data
 - 1. Sample size
 - 2. *Graphical Examination of the Data* (Analisis Distribusi, Analisis *Relationship* antara Variabel)
 - 3. Missing data
 - 4. Outlier data (Box and Whiskers Plot)
 - 5. Testing the assumption (Normalitas, Linearitas, Homoscedasticity)
- b. Factor Analysis

Kerjakan menggunakan data set berikut:

Obs	Form of letter of application	Appearance	Academic ability	Likeability	Self- confidence	Lucidity	Honesty	Salesmanship	Experience	Drive	Ambition	Grasp	Potential	Keeness to join	Suitability
1	6	7	2	5	8	7	8	8	3	8	9	7	5	7	10
2	9	10	5	8	10	9	9	10	5	9	9	8	8	8	10
3	7	8	3	6	9	8	9	7	4	9	9	8	6	8	10
4	5	6	8	5	6	5	9	2	8	4	5	8	7	6	5
5	6	8	8	8	4	4	9	5	8	5	5	8	8	7	7
6	7	7	7	6	8	7	10	5	9	6	5	8	6	6	6
7	9	9	8	8	8	8	8	8	10	8	10	8	9	8	10
8	9	9	9	8	9	9	8	8	10	9	10	9	9	9	10
9	9	9	7	8	8	8	8	5	9	8	9	8	8	8	10
10	4	7	10	2	10	10	7	10	3	10	10	10	9	3	10
11	4	7	10	0	10	8	3	9	5	9	10	8	10	2	5
12	4	7	10	4	10	10	7	8	2	8	8	10	10	3	7
13	6	9	8	10	5	4	9	4	4	4	5	4	7	6	8
14	8	9	8	9	6	3	8	2	5	2	6	6	7	5	6
15	4	8	8	7	5	4	10	2	7	5	3	6	6	4	6
16	6	9	6	7	8	9	8	9	8	8	7	6	8	6	10
17	8	7	7	7	9	5	8	6	6	7	8	6	6	7	8
18	6	8	8	4	8	8	6	4	3	3	6	7	2	6	4
19	6	7	8	4	7	8	5	4	4	2	6	8	3	5	4
20	4	8	7	8	8	9	10	5	2	6	7	9	8	8	9
21	3	8	6	8	8	8	10	5	3	6	7	8	8	5	8
22	9	8	7	8	9	10	10	10	3	10	8	10	8	10	8
23	7	10	7	9	9	9	10	10	3	9	9	10	9	10	8
24	9	8	7	10	8	10	10	10	2	9	7	9	9	10	8
25	6	9	7	7	4	5	9	3	2	4	4	4	4	5	4

26	7	8	7	8	5	4	8	2	3	4	5	6	5	5	6
27	2	10	7	9	8	9	10	5	3	5	6	7	6	4	5
28	6	3	5	3	5	3	5	0	0	3	3	0	0	5	0
29	4	3	4	3	3	0	0	0	0	4	4	0	0	5	0
30	4	6	5	6	9	4	10	3	1	3	3	2	2	7	3
31	5	5	4	7	8	4	10	3	2	5	5	3	4	8	3
32	3	3	5	7	7	9	10	3	2	5	3	7	5	5	2
33	2	3	5	7	7	9	10	3	2	2	3	6	4	5	2
34	3	4	6	4	3	3	8	1	1	3	3	3	2	5	2
35	6	7	4	3	3	0	9	0	1	0	2	3	1	5	3
36	9	8	5	5	6	6	8	2	2	2	4	5	6	6	3
37	4	9	6	4	10	8	8	9	1	3	9	7	5	3	2
38	4	9	6	6	9	9	7	9	1	2	10	8	5	5	2
39	10	6	9	10	9	10	10	10	10	10	8	10	10	10	10
40	10	6	9	10	9	10	10	10	10	10	10	10	10	10	10
41	10	7	8	0	2	1	2	0	10	2	0	3	0	0	10
42	10	3	8	0	1	1	0	0	10	0	0	0	0	0	10
43	3	4	9	8	2	4	5	3	6	2	1	3	3	3	8
44	7	7	7	6	9	8	8	6	8	8	10	8	8	6	5
45	9	6	10	9	7	7	10	2	1	5	5	7	8	4	5
46	9	8	10	10	7	9	10	3	1	5	7	9	9	4	4
47	0	7	10	3	5	0	10	0	0	2	2	0	0	0	0
48	0	6	10	1	5	0	10	0	0	2	2	0	0	0	0

LEMBAR KERJA PRAKTIKUM

Nilai	Materi	NIM	
	Tanggal	Nama	
	Dosen	Kelas	

DAFTAR PUSTAKA

- Addinsoft, 2019, XLSTAT Support Center datasets, [diakses secara online pada 14 November 2019 pukul 09.00], URL: https://help.xlstat.com/s/article/factoranalysis-in-excel-tutorial?language=en_US
- Al-Faritsy. A. Z., 2015, *Modul Praktikum Statistik Industri*, Program Studi Teknik Industri, Fakultas Sains dan Teknologi, Universitas Teknologi Yogyakarta.
- Anderson, R.E. and Tatham, R.L., 2006, *Multivariate Data Analysis*, 6th Edition, Prentice Hall: New Jersey.
- Carey, G., 2011, *Carey: Psyc 7291: Multivariate Statistics*, [Akses online pada 27 November 2011 pukul 20:35], URL: http://www.psych.colorado.edu/~carey/Courses/psyc7291/ClassDatasets.htm
- Cornish, R., 2006, *Oneway Analysis of Variance*, Mathematics Learning Support Center [Akses online pada 15 Januari 2016 pukul 14:10] URL:www.statstutor.co.uk
- Hair, J. F. Jr., Black, W. C., Babin, B. J., and Anderson, R. E. 2010. *Multivariate Data Analysis, 7th edition*. Pearson Prentice Hall.
- Lee, C., Famoye, F., Shelden, B. And Brown, A., 2015, SPSS online Training Workshop: Projects and Descriptions of Data Sets, Department of Mathematics, Central Michigan University. [Akses online pada 15 Januari 2016 pukul 11:45] URL: calcnet.mth.cmich.edu/org/spss/Prjs_Datasets.htm
- Leigh, S., 2003, *Education and Training: Datasets*, Statistical Engineering Division, National Institute of Standard and Technology. [Akses online pada 17 Januari 2016 pukul 09:00]

URL:www.itl.nist.gov/div898/education/datasets.htm#anova

@2019 Diterbitkan oleh: Universitas Teknologi Yogyakarta JI. Siliwangi, Jombor, Sleman, Yogyakarta Email : <u>publikasi@uty.ac.id</u> Website : uty.ac.id