Klasifikasi Tingkat Penyakit Diabetic Retinopathy Pada Citra Retina Fundus Menggunakan Convolutional Neural Network

Muddin, Wahyu Saputro Ridlo (2021) Klasifikasi Tingkat Penyakit Diabetic Retinopathy Pada Citra Retina Fundus Menggunakan Convolutional Neural Network. Tugas Akhir thesis, University of Technology Yogyakarta.

[img]
Preview
Text
5170711019_Wahyu Saputro Ridlo Muddin.pdf

Download (11kB) | Preview

Abstract

ABSTRACT Diabetic retinopathy is damage to a retina caused by complications of diabetes mellitus. The risk of this disease increases with the length of time a patient suffers from diabetes mellitus. This disease is divided into two, namely Non-Proliferative Diabetic Retinopathy (NPDR) with 4 phases (normal, mild, moderate and severe) and Preproliferative Diabetic Retinopathy (PDR). By using the Convolutional Neural Network processing method, retinal fundus images can be identified whether they are experiencing a phase of NPDR or not. Digital image processing prior to classification using CNN such as. resize, CLAHE and gaussian filters can have an increasing impact on the system accuracy of CNN. The results of this study get accuracy of 68%, precision of 69% and recall of 68%, using the confusion matrix method. Keywords: Diabetic Retinopathy, Fundus Retina Image, Digital Image Processing, CNN, Confusion Matrix

Item Type: Thesis (Skripsi, Tugas Akhir or Kerja Praktek) (Tugas Akhir)
Subjects: T Technology > TK Electrical engineering. Electronics Nuclear engineering
Divisions: Fakultas Sains Dan Teknologi > S1 Teknik Elektro
Depositing User: Kaprodi Teknik Elektro
Date Deposited: 12 Oct 2021 02:16
Last Modified: 12 Oct 2021 02:16
URI: http://eprints.uty.ac.id/id/eprint/8381

Actions (login required)

View Item View Item